Properties

Label 20-336e10-1.1-c5e10-0-3
Degree $20$
Conductor $1.834\times 10^{25}$
Sign $1$
Analytic cond. $2.06537\times 10^{17}$
Root an. cond. $7.34091$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 45·3-s − 75·5-s + 113·7-s + 810·9-s − 91·11-s + 580·13-s − 3.37e3·15-s − 1.12e3·17-s − 282·19-s + 5.08e3·21-s + 1.80e3·23-s + 1.05e4·25-s + 3.64e3·27-s + 5.02e3·29-s + 5.06e3·31-s − 4.09e3·33-s − 8.47e3·35-s − 5.01e3·37-s + 2.61e4·39-s + 1.28e4·41-s − 1.73e4·43-s − 6.07e4·45-s + 50·47-s + 2.09e4·49-s − 5.07e4·51-s + 1.16e3·53-s + 6.82e3·55-s + ⋯
L(s)  = 1  + 2.88·3-s − 1.34·5-s + 0.871·7-s + 10/3·9-s − 0.226·11-s + 0.951·13-s − 3.87·15-s − 0.946·17-s − 0.179·19-s + 2.51·21-s + 0.712·23-s + 3.36·25-s + 0.962·27-s + 1.10·29-s + 0.947·31-s − 0.654·33-s − 1.16·35-s − 0.601·37-s + 2.74·39-s + 1.19·41-s − 1.42·43-s − 4.47·45-s + 0.00330·47-s + 1.24·49-s − 2.73·51-s + 0.0570·53-s + 0.304·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{10} \cdot 7^{10}\right)^{s/2} \, \Gamma_{\C}(s)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{40} \cdot 3^{10} \cdot 7^{10}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{10} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(20\)
Conductor: \(2^{40} \cdot 3^{10} \cdot 7^{10}\)
Sign: $1$
Analytic conductor: \(2.06537\times 10^{17}\)
Root analytic conductor: \(7.34091\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((20,\ 2^{40} \cdot 3^{10} \cdot 7^{10} ,\ ( \ : [5/2]^{10} ),\ 1 )\)

Particular Values

\(L(3)\) \(\approx\) \(26.47861284\)
\(L(\frac12)\) \(\approx\) \(26.47861284\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( ( 1 - p^{2} T + p^{4} T^{2} )^{5} \)
7 \( 1 - 113 T - 167 p^{2} T^{2} - 11202 p^{2} T^{3} + 484807 p^{3} T^{4} + 4507837 p^{4} T^{5} + 484807 p^{8} T^{6} - 11202 p^{12} T^{7} - 167 p^{17} T^{8} - 113 p^{20} T^{9} + p^{25} T^{10} \)
good5 \( 1 + 3 p^{2} T - 4899 T^{2} - 701302 T^{3} - 5537914 T^{4} + 1869015138 T^{5} + 65992864091 T^{6} + 1518915057793 T^{7} + 132857039542111 T^{8} - 1729481902010788 p T^{9} - 1382266490050084604 T^{10} - 1729481902010788 p^{6} T^{11} + 132857039542111 p^{10} T^{12} + 1518915057793 p^{15} T^{13} + 65992864091 p^{20} T^{14} + 1869015138 p^{25} T^{15} - 5537914 p^{30} T^{16} - 701302 p^{35} T^{17} - 4899 p^{40} T^{18} + 3 p^{47} T^{19} + p^{50} T^{20} \)
11 \( 1 + 91 T - 207137 T^{2} + 103452220 T^{3} + 32932478116 T^{4} - 25669284404352 T^{5} + 4829717639891313 T^{6} + 4253851844919482635 T^{7} - \)\(19\!\cdots\!17\)\( T^{8} - \)\(27\!\cdots\!08\)\( T^{9} + \)\(36\!\cdots\!20\)\( T^{10} - \)\(27\!\cdots\!08\)\( p^{5} T^{11} - \)\(19\!\cdots\!17\)\( p^{10} T^{12} + 4253851844919482635 p^{15} T^{13} + 4829717639891313 p^{20} T^{14} - 25669284404352 p^{25} T^{15} + 32932478116 p^{30} T^{16} + 103452220 p^{35} T^{17} - 207137 p^{40} T^{18} + 91 p^{45} T^{19} + p^{50} T^{20} \)
13 \( ( 1 - 290 T + 1033922 T^{2} - 432014760 T^{3} + 591803030193 T^{4} - 220331932096940 T^{5} + 591803030193 p^{5} T^{6} - 432014760 p^{10} T^{7} + 1033922 p^{15} T^{8} - 290 p^{20} T^{9} + p^{25} T^{10} )^{2} \)
17 \( 1 + 1128 T - 2871253 T^{2} - 4683896888 T^{3} + 1632672494319 T^{4} + 4807943464711088 T^{5} - 1145579697463161662 T^{6} + \)\(28\!\cdots\!28\)\( T^{7} + \)\(14\!\cdots\!21\)\( T^{8} - \)\(51\!\cdots\!12\)\( T^{9} - \)\(32\!\cdots\!51\)\( T^{10} - \)\(51\!\cdots\!12\)\( p^{5} T^{11} + \)\(14\!\cdots\!21\)\( p^{10} T^{12} + \)\(28\!\cdots\!28\)\( p^{15} T^{13} - 1145579697463161662 p^{20} T^{14} + 4807943464711088 p^{25} T^{15} + 1632672494319 p^{30} T^{16} - 4683896888 p^{35} T^{17} - 2871253 p^{40} T^{18} + 1128 p^{45} T^{19} + p^{50} T^{20} \)
19 \( 1 + 282 T - 5910808 T^{2} - 6927683528 T^{3} + 11866383072753 T^{4} + 25696123510832960 T^{5} - 8704106080753615618 T^{6} - \)\(12\!\cdots\!94\)\( T^{7} + \)\(50\!\cdots\!41\)\( T^{8} - \)\(33\!\cdots\!92\)\( T^{9} - \)\(24\!\cdots\!50\)\( T^{10} - \)\(33\!\cdots\!92\)\( p^{5} T^{11} + \)\(50\!\cdots\!41\)\( p^{10} T^{12} - \)\(12\!\cdots\!94\)\( p^{15} T^{13} - 8704106080753615618 p^{20} T^{14} + 25696123510832960 p^{25} T^{15} + 11866383072753 p^{30} T^{16} - 6927683528 p^{35} T^{17} - 5910808 p^{40} T^{18} + 282 p^{45} T^{19} + p^{50} T^{20} \)
23 \( 1 - 1808 T - 28330515 T^{2} + 33756815056 T^{3} + 512797936671743 T^{4} - 411870739014875424 T^{5} - \)\(62\!\cdots\!14\)\( T^{6} + \)\(25\!\cdots\!68\)\( T^{7} + \)\(59\!\cdots\!01\)\( T^{8} - \)\(80\!\cdots\!32\)\( T^{9} - \)\(42\!\cdots\!29\)\( T^{10} - \)\(80\!\cdots\!32\)\( p^{5} T^{11} + \)\(59\!\cdots\!01\)\( p^{10} T^{12} + \)\(25\!\cdots\!68\)\( p^{15} T^{13} - \)\(62\!\cdots\!14\)\( p^{20} T^{14} - 411870739014875424 p^{25} T^{15} + 512797936671743 p^{30} T^{16} + 33756815056 p^{35} T^{17} - 28330515 p^{40} T^{18} - 1808 p^{45} T^{19} + p^{50} T^{20} \)
29 \( ( 1 - 2513 T + 36720856 T^{2} - 139840623403 T^{3} + 793427248418299 T^{4} - 3409505650613517756 T^{5} + 793427248418299 p^{5} T^{6} - 139840623403 p^{10} T^{7} + 36720856 p^{15} T^{8} - 2513 p^{20} T^{9} + p^{25} T^{10} )^{2} \)
31 \( 1 - 5069 T - 73852472 T^{2} + 565091516999 T^{3} + 2447813001040862 T^{4} - 27163209110944527031 T^{5} - \)\(26\!\cdots\!34\)\( T^{6} + \)\(72\!\cdots\!99\)\( T^{7} - \)\(67\!\cdots\!75\)\( T^{8} - \)\(80\!\cdots\!98\)\( T^{9} + \)\(35\!\cdots\!36\)\( T^{10} - \)\(80\!\cdots\!98\)\( p^{5} T^{11} - \)\(67\!\cdots\!75\)\( p^{10} T^{12} + \)\(72\!\cdots\!99\)\( p^{15} T^{13} - \)\(26\!\cdots\!34\)\( p^{20} T^{14} - 27163209110944527031 p^{25} T^{15} + 2447813001040862 p^{30} T^{16} + 565091516999 p^{35} T^{17} - 73852472 p^{40} T^{18} - 5069 p^{45} T^{19} + p^{50} T^{20} \)
37 \( 1 + 5010 T - 176109502 T^{2} - 693012191028 T^{3} + 17836869846127371 T^{4} + 58931467944647558376 T^{5} - \)\(78\!\cdots\!88\)\( T^{6} - \)\(28\!\cdots\!34\)\( T^{7} - \)\(58\!\cdots\!31\)\( T^{8} + \)\(82\!\cdots\!28\)\( T^{9} + \)\(30\!\cdots\!14\)\( T^{10} + \)\(82\!\cdots\!28\)\( p^{5} T^{11} - \)\(58\!\cdots\!31\)\( p^{10} T^{12} - \)\(28\!\cdots\!34\)\( p^{15} T^{13} - \)\(78\!\cdots\!88\)\( p^{20} T^{14} + 58931467944647558376 p^{25} T^{15} + 17836869846127371 p^{30} T^{16} - 693012191028 p^{35} T^{17} - 176109502 p^{40} T^{18} + 5010 p^{45} T^{19} + p^{50} T^{20} \)
41 \( ( 1 - 6436 T + 152301825 T^{2} - 352400335696 T^{3} + 12581789360542150 T^{4} - 76643539045415655128 T^{5} + 12581789360542150 p^{5} T^{6} - 352400335696 p^{10} T^{7} + 152301825 p^{15} T^{8} - 6436 p^{20} T^{9} + p^{25} T^{10} )^{2} \)
43 \( ( 1 + 8664 T + 9252900 p T^{2} + 4446942043122 T^{3} + 81039262862044859 T^{4} + \)\(93\!\cdots\!52\)\( T^{5} + 81039262862044859 p^{5} T^{6} + 4446942043122 p^{10} T^{7} + 9252900 p^{16} T^{8} + 8664 p^{20} T^{9} + p^{25} T^{10} )^{2} \)
47 \( 1 - 50 T - 515822063 T^{2} + 9530946859930 T^{3} + 123268869925169815 T^{4} - \)\(41\!\cdots\!60\)\( T^{5} + \)\(14\!\cdots\!54\)\( T^{6} + \)\(86\!\cdots\!20\)\( T^{7} - \)\(11\!\cdots\!07\)\( T^{8} - \)\(65\!\cdots\!50\)\( T^{9} + \)\(29\!\cdots\!15\)\( T^{10} - \)\(65\!\cdots\!50\)\( p^{5} T^{11} - \)\(11\!\cdots\!07\)\( p^{10} T^{12} + \)\(86\!\cdots\!20\)\( p^{15} T^{13} + \)\(14\!\cdots\!54\)\( p^{20} T^{14} - \)\(41\!\cdots\!60\)\( p^{25} T^{15} + 123268869925169815 p^{30} T^{16} + 9530946859930 p^{35} T^{17} - 515822063 p^{40} T^{18} - 50 p^{45} T^{19} + p^{50} T^{20} \)
53 \( 1 - 1167 T - 1302496795 T^{2} - 722936122666 T^{3} + 818165591056894602 T^{4} + \)\(15\!\cdots\!54\)\( T^{5} - \)\(41\!\cdots\!05\)\( T^{6} - \)\(78\!\cdots\!13\)\( T^{7} + \)\(20\!\cdots\!03\)\( T^{8} + \)\(13\!\cdots\!04\)\( T^{9} - \)\(89\!\cdots\!84\)\( T^{10} + \)\(13\!\cdots\!04\)\( p^{5} T^{11} + \)\(20\!\cdots\!03\)\( p^{10} T^{12} - \)\(78\!\cdots\!13\)\( p^{15} T^{13} - \)\(41\!\cdots\!05\)\( p^{20} T^{14} + \)\(15\!\cdots\!54\)\( p^{25} T^{15} + 818165591056894602 p^{30} T^{16} - 722936122666 p^{35} T^{17} - 1302496795 p^{40} T^{18} - 1167 p^{45} T^{19} + p^{50} T^{20} \)
59 \( 1 - 42797 T - 746898509 T^{2} + 560954873144 p T^{3} + 744184398428801224 T^{4} - \)\(39\!\cdots\!80\)\( T^{5} - \)\(75\!\cdots\!47\)\( T^{6} - \)\(86\!\cdots\!69\)\( T^{7} + \)\(58\!\cdots\!91\)\( T^{8} + \)\(34\!\cdots\!04\)\( T^{9} - \)\(37\!\cdots\!52\)\( T^{10} + \)\(34\!\cdots\!04\)\( p^{5} T^{11} + \)\(58\!\cdots\!91\)\( p^{10} T^{12} - \)\(86\!\cdots\!69\)\( p^{15} T^{13} - \)\(75\!\cdots\!47\)\( p^{20} T^{14} - \)\(39\!\cdots\!80\)\( p^{25} T^{15} + 744184398428801224 p^{30} T^{16} + 560954873144 p^{36} T^{17} - 746898509 p^{40} T^{18} - 42797 p^{45} T^{19} + p^{50} T^{20} \)
61 \( 1 + 26546 T - 2053436533 T^{2} + 7045676629618 T^{3} + 3843305143009020751 T^{4} - \)\(44\!\cdots\!48\)\( T^{5} - \)\(24\!\cdots\!34\)\( T^{6} + \)\(88\!\cdots\!64\)\( T^{7} + \)\(62\!\cdots\!21\)\( T^{8} - \)\(29\!\cdots\!30\)\( T^{9} + \)\(86\!\cdots\!13\)\( T^{10} - \)\(29\!\cdots\!30\)\( p^{5} T^{11} + \)\(62\!\cdots\!21\)\( p^{10} T^{12} + \)\(88\!\cdots\!64\)\( p^{15} T^{13} - \)\(24\!\cdots\!34\)\( p^{20} T^{14} - \)\(44\!\cdots\!48\)\( p^{25} T^{15} + 3843305143009020751 p^{30} T^{16} + 7045676629618 p^{35} T^{17} - 2053436533 p^{40} T^{18} + 26546 p^{45} T^{19} + p^{50} T^{20} \)
67 \( 1 - 13440 T - 1334876300 T^{2} + 113866111938172 T^{3} - 416036783709933483 T^{4} - \)\(17\!\cdots\!24\)\( T^{5} + \)\(50\!\cdots\!38\)\( T^{6} + \)\(81\!\cdots\!48\)\( T^{7} - \)\(87\!\cdots\!35\)\( T^{8} - \)\(31\!\cdots\!00\)\( T^{9} + \)\(75\!\cdots\!42\)\( T^{10} - \)\(31\!\cdots\!00\)\( p^{5} T^{11} - \)\(87\!\cdots\!35\)\( p^{10} T^{12} + \)\(81\!\cdots\!48\)\( p^{15} T^{13} + \)\(50\!\cdots\!38\)\( p^{20} T^{14} - \)\(17\!\cdots\!24\)\( p^{25} T^{15} - 416036783709933483 p^{30} T^{16} + 113866111938172 p^{35} T^{17} - 1334876300 p^{40} T^{18} - 13440 p^{45} T^{19} + p^{50} T^{20} \)
71 \( ( 1 - 19678 T + 4377836491 T^{2} + 18392092863176 T^{3} + 5772364878093878562 T^{4} + \)\(19\!\cdots\!12\)\( T^{5} + 5772364878093878562 p^{5} T^{6} + 18392092863176 p^{10} T^{7} + 4377836491 p^{15} T^{8} - 19678 p^{20} T^{9} + p^{25} T^{10} )^{2} \)
73 \( 1 + 27768 T - 2614728718 T^{2} - 125661647629388 T^{3} - 235021497885838413 T^{4} + \)\(49\!\cdots\!28\)\( T^{5} + \)\(14\!\cdots\!88\)\( T^{6} + \)\(85\!\cdots\!24\)\( T^{7} - \)\(72\!\cdots\!51\)\( T^{8} - \)\(11\!\cdots\!00\)\( T^{9} - \)\(30\!\cdots\!10\)\( T^{10} - \)\(11\!\cdots\!00\)\( p^{5} T^{11} - \)\(72\!\cdots\!51\)\( p^{10} T^{12} + \)\(85\!\cdots\!24\)\( p^{15} T^{13} + \)\(14\!\cdots\!88\)\( p^{20} T^{14} + \)\(49\!\cdots\!28\)\( p^{25} T^{15} - 235021497885838413 p^{30} T^{16} - 125661647629388 p^{35} T^{17} - 2614728718 p^{40} T^{18} + 27768 p^{45} T^{19} + p^{50} T^{20} \)
79 \( 1 - 123369 T + 1199712260 T^{2} + 195725591044439 T^{3} + 10662733375780814370 T^{4} - \)\(41\!\cdots\!79\)\( T^{5} - \)\(30\!\cdots\!34\)\( T^{6} - \)\(15\!\cdots\!49\)\( T^{7} + \)\(98\!\cdots\!73\)\( T^{8} + \)\(78\!\cdots\!38\)\( T^{9} - \)\(70\!\cdots\!28\)\( T^{10} + \)\(78\!\cdots\!38\)\( p^{5} T^{11} + \)\(98\!\cdots\!73\)\( p^{10} T^{12} - \)\(15\!\cdots\!49\)\( p^{15} T^{13} - \)\(30\!\cdots\!34\)\( p^{20} T^{14} - \)\(41\!\cdots\!79\)\( p^{25} T^{15} + 10662733375780814370 p^{30} T^{16} + 195725591044439 p^{35} T^{17} + 1199712260 p^{40} T^{18} - 123369 p^{45} T^{19} + p^{50} T^{20} \)
83 \( ( 1 + 167125 T + 22184010382 T^{2} + 2167403149650831 T^{3} + \)\(17\!\cdots\!89\)\( T^{4} + \)\(11\!\cdots\!84\)\( T^{5} + \)\(17\!\cdots\!89\)\( p^{5} T^{6} + 2167403149650831 p^{10} T^{7} + 22184010382 p^{15} T^{8} + 167125 p^{20} T^{9} + p^{25} T^{10} )^{2} \)
89 \( 1 + 59350 T - 3351354885 T^{2} - 1493656939935546 T^{3} - 92571186276230359133 T^{4} + \)\(87\!\cdots\!24\)\( T^{5} + \)\(10\!\cdots\!58\)\( T^{6} + \)\(78\!\cdots\!52\)\( T^{7} + \)\(20\!\cdots\!17\)\( T^{8} - \)\(37\!\cdots\!50\)\( T^{9} - \)\(41\!\cdots\!03\)\( T^{10} - \)\(37\!\cdots\!50\)\( p^{5} T^{11} + \)\(20\!\cdots\!17\)\( p^{10} T^{12} + \)\(78\!\cdots\!52\)\( p^{15} T^{13} + \)\(10\!\cdots\!58\)\( p^{20} T^{14} + \)\(87\!\cdots\!24\)\( p^{25} T^{15} - 92571186276230359133 p^{30} T^{16} - 1493656939935546 p^{35} T^{17} - 3351354885 p^{40} T^{18} + 59350 p^{45} T^{19} + p^{50} T^{20} \)
97 \( ( 1 - 262641 T + 43584270984 T^{2} - 5815465358132403 T^{3} + \)\(66\!\cdots\!43\)\( T^{4} - \)\(65\!\cdots\!20\)\( T^{5} + \)\(66\!\cdots\!43\)\( p^{5} T^{6} - 5815465358132403 p^{10} T^{7} + 43584270984 p^{15} T^{8} - 262641 p^{20} T^{9} + p^{25} T^{10} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{20} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−3.42628597272419629363304735839, −3.41607935119328823661932226290, −3.24597550013706458922945365021, −3.21470076860219433955403982613, −2.81863520244851108987865687231, −2.78137522821876232066809322349, −2.66578222343428417326067598070, −2.60562475419925441902639665234, −2.56887990724060181227773546196, −2.49358620303178510692736724332, −2.37388104348029120520237264490, −2.08837619935102343455959461850, −1.93168244879969479736777951544, −1.73284143056230045135915519922, −1.56793632611009629986512855505, −1.50327646556792717883312882957, −1.47889002129844324626029704308, −1.24616895834780445869865780884, −0.859378997083398715507692287046, −0.840606031507154982724676947388, −0.820076142961677572401618159923, −0.796492760622783106125167140570, −0.35183075491522651988972176009, −0.27289119251384512250982275881, −0.15442350486501182768417752402, 0.15442350486501182768417752402, 0.27289119251384512250982275881, 0.35183075491522651988972176009, 0.796492760622783106125167140570, 0.820076142961677572401618159923, 0.840606031507154982724676947388, 0.859378997083398715507692287046, 1.24616895834780445869865780884, 1.47889002129844324626029704308, 1.50327646556792717883312882957, 1.56793632611009629986512855505, 1.73284143056230045135915519922, 1.93168244879969479736777951544, 2.08837619935102343455959461850, 2.37388104348029120520237264490, 2.49358620303178510692736724332, 2.56887990724060181227773546196, 2.60562475419925441902639665234, 2.66578222343428417326067598070, 2.78137522821876232066809322349, 2.81863520244851108987865687231, 3.21470076860219433955403982613, 3.24597550013706458922945365021, 3.41607935119328823661932226290, 3.42628597272419629363304735839

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.