Properties

Degree 2
Conductor $ 2^{4} \cdot 3 \cdot 7 $
Sign $-0.304 + 0.952i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (1.45 − 0.934i)3-s + (−1.90 − 3.29i)5-s + (−2.23 + 1.41i)7-s + (1.25 − 2.72i)9-s + (0.309 + 0.178i)11-s − 4.04i·13-s + (−5.84 − 3.02i)15-s + (−0.0519 + 0.0900i)17-s + (2.12 − 1.22i)19-s + (−1.93 + 4.15i)21-s + (−1.15 + 0.665i)23-s + (−4.72 + 8.17i)25-s + (−0.723 − 5.14i)27-s − 4.97i·29-s + (6.83 + 3.94i)31-s + ⋯
L(s)  = 1  + (0.841 − 0.539i)3-s + (−0.849 − 1.47i)5-s + (−0.844 + 0.535i)7-s + (0.417 − 0.908i)9-s + (0.0933 + 0.0538i)11-s − 1.12i·13-s + (−1.50 − 0.780i)15-s + (−0.0126 + 0.0218i)17-s + (0.487 − 0.281i)19-s + (−0.422 + 0.906i)21-s + (−0.240 + 0.138i)23-s + (−0.944 + 1.63i)25-s + (−0.139 − 0.990i)27-s − 0.923i·29-s + (1.22 + 0.708i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.304 + 0.952i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.304 + 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(336\)    =    \(2^{4} \cdot 3 \cdot 7\)
\( \varepsilon \)  =  $-0.304 + 0.952i$
motivic weight  =  \(1\)
character  :  $\chi_{336} (17, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 336,\ (\ :1/2),\ -0.304 + 0.952i)$
$L(1)$  $\approx$  $0.769182 - 1.05316i$
$L(\frac12)$  $\approx$  $0.769182 - 1.05316i$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-1.45 + 0.934i)T \)
7 \( 1 + (2.23 - 1.41i)T \)
good5 \( 1 + (1.90 + 3.29i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (-0.309 - 0.178i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + 4.04iT - 13T^{2} \)
17 \( 1 + (0.0519 - 0.0900i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.12 + 1.22i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (1.15 - 0.665i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + 4.97iT - 29T^{2} \)
31 \( 1 + (-6.83 - 3.94i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (-5.45 - 9.45i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 6.15T + 41T^{2} \)
43 \( 1 + 0.502T + 43T^{2} \)
47 \( 1 + (5.72 + 9.91i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-5.08 - 2.93i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (3.77 - 6.53i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-8.20 + 4.73i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (-1.34 + 2.32i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 5.78iT - 71T^{2} \)
73 \( 1 + (0.203 + 0.117i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (-1.61 - 2.79i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 9.07T + 83T^{2} \)
89 \( 1 + (-3.41 - 5.90i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 5.14iT - 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−11.79645280889782524004423416912, −10.00833320195499414705542666606, −9.232027856707322671390029697869, −8.336009866331646022460798534154, −7.85477903362729193107898077611, −6.52808451544070357470227451900, −5.25127195187350083973448930200, −3.96995128990737407099586955054, −2.81393952623480763804756503467, −0.871030348033655795552330098128, 2.59526906863854710148238366343, 3.57692607484081581047623259910, 4.31090868008685798545777892672, 6.30327243512666475269033143958, 7.19508377831891081668701020108, 7.88700365179089065986067197980, 9.214167886608814393697660751836, 9.982538972809937611340927580644, 10.82972185319706724503133838808, 11.55279525522866921362255347803

Graph of the $Z$-function along the critical line