Properties

Label 2-3332-68.43-c0-0-1
Degree $2$
Conductor $3332$
Sign $-0.739 - 0.673i$
Analytic cond. $1.66288$
Root an. cond. $1.28952$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.292 + 0.707i)5-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (−0.292 − 0.707i)10-s + 2i·13-s − 1.00·16-s + (0.707 + 0.707i)17-s − 1.00·18-s + (0.707 + 0.292i)20-s + (0.292 + 0.292i)25-s + (−1.41 − 1.41i)26-s + (0.707 − 1.70i)29-s + (0.707 − 0.707i)32-s + ⋯
L(s)  = 1  + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.292 + 0.707i)5-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (−0.292 − 0.707i)10-s + 2i·13-s − 1.00·16-s + (0.707 + 0.707i)17-s − 1.00·18-s + (0.707 + 0.292i)20-s + (0.292 + 0.292i)25-s + (−1.41 − 1.41i)26-s + (0.707 − 1.70i)29-s + (0.707 − 0.707i)32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.739 - 0.673i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3332 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.739 - 0.673i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3332\)    =    \(2^{2} \cdot 7^{2} \cdot 17\)
Sign: $-0.739 - 0.673i$
Analytic conductor: \(1.66288\)
Root analytic conductor: \(1.28952\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3332} (1471, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3332,\ (\ :0),\ -0.739 - 0.673i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8135887948\)
\(L(\frac12)\) \(\approx\) \(0.8135887948\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.707 - 0.707i)T \)
7 \( 1 \)
17 \( 1 + (-0.707 - 0.707i)T \)
good3 \( 1 + (-0.707 - 0.707i)T^{2} \)
5 \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \)
11 \( 1 + (-0.707 + 0.707i)T^{2} \)
13 \( 1 - 2iT - T^{2} \)
19 \( 1 + iT^{2} \)
23 \( 1 + (-0.707 + 0.707i)T^{2} \)
29 \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \)
31 \( 1 + (-0.707 - 0.707i)T^{2} \)
37 \( 1 + (1.70 + 0.707i)T + (0.707 + 0.707i)T^{2} \)
41 \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \)
43 \( 1 - iT^{2} \)
47 \( 1 + T^{2} \)
53 \( 1 + (1 - i)T - iT^{2} \)
59 \( 1 - iT^{2} \)
61 \( 1 + (-0.707 - 1.70i)T + (-0.707 + 0.707i)T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 + (-0.707 - 0.707i)T^{2} \)
73 \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \)
79 \( 1 + (-0.707 + 0.707i)T^{2} \)
83 \( 1 + iT^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.963496633033905233351998596253, −8.333428804253593515343779294271, −7.39305428322575258687015400428, −7.07382149818057030399372759746, −6.36371574000492539707924882567, −5.48542224060844217595885183287, −4.51232389073341059948598171692, −3.83606717947741136732340941936, −2.31257225325893339478800050740, −1.53677249224403310468810495226, 0.67462249582215132399735969443, 1.51765393225396190521489993603, 3.19974757538479817229075309760, 3.29677126391270769567097625217, 4.69926971905537516192390360629, 5.18765683861963310014032409969, 6.52283731195646206340894548442, 7.23086131065320965486865430661, 8.114202200424037202646084147307, 8.439268726153336562581636659625

Graph of the $Z$-function along the critical line