Properties

Degree 2
Conductor $ 7 \cdot 11 \cdot 43 $
Sign $1$
Motivic weight 0
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 1.53·2-s + 1.96·3-s + 1.34·4-s − 1.28·5-s − 3.01·6-s − 7-s − 0.532·8-s + 2.87·9-s + 1.96·10-s − 11-s + 2.65·12-s + 1.73·13-s + 1.53·14-s − 2.53·15-s − 0.532·16-s − 0.684·17-s − 4.41·18-s − 1.73·20-s − 1.96·21-s + 1.53·22-s + 23-s − 1.04·24-s + 0.652·25-s − 2.65·26-s + 3.70·27-s − 1.34·28-s + 0.347·29-s + ⋯
L(s)  = 1  − 1.53·2-s + 1.96·3-s + 1.34·4-s − 1.28·5-s − 3.01·6-s − 7-s − 0.532·8-s + 2.87·9-s + 1.96·10-s − 11-s + 2.65·12-s + 1.73·13-s + 1.53·14-s − 2.53·15-s − 0.532·16-s − 0.684·17-s − 4.41·18-s − 1.73·20-s − 1.96·21-s + 1.53·22-s + 23-s − 1.04·24-s + 0.652·25-s − 2.65·26-s + 3.70·27-s − 1.34·28-s + 0.347·29-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 3311 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 3311 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3311\)    =    \(7 \cdot 11 \cdot 43\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(0\)
character  :  $\chi_{3311} (3310, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 3311,\ (\ :0),\ 1)$
$L(\frac{1}{2})$  $\approx$  $0.9011357123$
$L(\frac12)$  $\approx$  $0.9011357123$
$L(1)$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{7,\;11,\;43\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{7,\;11,\;43\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad7 \( 1 + T \)
11 \( 1 + T \)
43 \( 1 - T \)
good2 \( 1 + 1.53T + T^{2} \)
3 \( 1 - 1.96T + T^{2} \)
5 \( 1 + 1.28T + T^{2} \)
13 \( 1 - 1.73T + T^{2} \)
17 \( 1 + 0.684T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - T + T^{2} \)
29 \( 1 - 0.347T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - 0.684T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 + 1.87T + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 1.53T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - 1.96T + T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.795626109499647282304525505318, −8.156409741796442473348489822604, −7.78429074132568693015394180505, −7.09134248530022677594013738445, −6.41715112665167125271224022965, −4.56807208083852890955816004050, −3.73364855203391378193108226767, −3.11268737081187728429117616230, −2.28007286410743235673800277247, −0.981465568049694033529470700852, 0.981465568049694033529470700852, 2.28007286410743235673800277247, 3.11268737081187728429117616230, 3.73364855203391378193108226767, 4.56807208083852890955816004050, 6.41715112665167125271224022965, 7.09134248530022677594013738445, 7.78429074132568693015394180505, 8.156409741796442473348489822604, 8.795626109499647282304525505318

Graph of the $Z$-function along the critical line