Properties

Degree 2
Conductor $ 7 \cdot 11 \cdot 43 $
Sign $1$
Motivic weight 0
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 1.53·2-s − 1.96·3-s + 1.34·4-s + 1.28·5-s + 3.01·6-s − 7-s − 0.532·8-s + 2.87·9-s − 1.96·10-s − 11-s − 2.65·12-s − 1.73·13-s + 1.53·14-s − 2.53·15-s − 0.532·16-s + 0.684·17-s − 4.41·18-s + 1.73·20-s + 1.96·21-s + 1.53·22-s + 23-s + 1.04·24-s + 0.652·25-s + 2.65·26-s − 3.70·27-s − 1.34·28-s + 0.347·29-s + ⋯
L(s)  = 1  − 1.53·2-s − 1.96·3-s + 1.34·4-s + 1.28·5-s + 3.01·6-s − 7-s − 0.532·8-s + 2.87·9-s − 1.96·10-s − 11-s − 2.65·12-s − 1.73·13-s + 1.53·14-s − 2.53·15-s − 0.532·16-s + 0.684·17-s − 4.41·18-s + 1.73·20-s + 1.96·21-s + 1.53·22-s + 23-s + 1.04·24-s + 0.652·25-s + 2.65·26-s − 3.70·27-s − 1.34·28-s + 0.347·29-s + ⋯

Functional equation

\[\begin{aligned} \Lambda(s)=\mathstrut & 3311 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]
\[\begin{aligned} \Lambda(s)=\mathstrut & 3311 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned} \]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3311\)    =    \(7 \cdot 11 \cdot 43\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(0\)
character  :  $\chi_{3311} (3310, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 3311,\ (\ :0),\ 1)$
$L(\frac{1}{2})$  $\approx$  $0.2328370403$
$L(\frac12)$  $\approx$  $0.2328370403$
$L(1)$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \] where, for $p \notin \{7,\;11,\;43\}$, \(F_p\) is a polynomial of degree 2. If $p \in \{7,\;11,\;43\}$, then $F_p$ is a polynomial of degree at most 1.
$p$$F_p$
bad7 \( 1 + T \)
11 \( 1 + T \)
43 \( 1 - T \)
good2 \( 1 + 1.53T + T^{2} \)
3 \( 1 + 1.96T + T^{2} \)
5 \( 1 - 1.28T + T^{2} \)
13 \( 1 + 1.73T + T^{2} \)
17 \( 1 - 0.684T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - T + T^{2} \)
29 \( 1 - 0.347T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + 0.684T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 + 1.87T + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 1.53T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 + 1.96T + T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
\[\begin{aligned} L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1} \end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.361844506116916742794339973740, −7.929259159303406042071713882539, −7.12274197862997390586998985035, −6.76789469070540975249395778758, −5.89532251576273852753681488031, −5.30791205188549883679777900311, −4.62845025381119585935137093097, −2.77607906931930552135157304236, −1.76626982298360311091601119003, −0.58239319241444963534525937350, 0.58239319241444963534525937350, 1.76626982298360311091601119003, 2.77607906931930552135157304236, 4.62845025381119585935137093097, 5.30791205188549883679777900311, 5.89532251576273852753681488031, 6.76789469070540975249395778758, 7.12274197862997390586998985035, 7.929259159303406042071713882539, 9.361844506116916742794339973740

Graph of the $Z$-function along the critical line