| L(s) = 1 | + i·3-s + 5i·7-s − 9-s + 11-s − 4i·13-s − 5i·17-s − 7·19-s − 5·21-s − 9i·23-s − i·27-s − 2·29-s + 4·31-s + i·33-s − 7i·37-s + 4·39-s + ⋯ |
| L(s) = 1 | + 0.577i·3-s + 1.88i·7-s − 0.333·9-s + 0.301·11-s − 1.10i·13-s − 1.21i·17-s − 1.60·19-s − 1.09·21-s − 1.87i·23-s − 0.192i·27-s − 0.371·29-s + 0.718·31-s + 0.174i·33-s − 1.15i·37-s + 0.640·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.9455614266\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9455614266\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 11 | \( 1 - T \) |
| good | 7 | \( 1 - 5iT - 7T^{2} \) |
| 13 | \( 1 + 4iT - 13T^{2} \) |
| 17 | \( 1 + 5iT - 17T^{2} \) |
| 19 | \( 1 + 7T + 19T^{2} \) |
| 23 | \( 1 + 9iT - 23T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + 7iT - 37T^{2} \) |
| 41 | \( 1 + 7T + 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 + 9iT - 47T^{2} \) |
| 53 | \( 1 + 2iT - 53T^{2} \) |
| 59 | \( 1 - 7T + 59T^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 - 2iT - 67T^{2} \) |
| 71 | \( 1 - 5T + 71T^{2} \) |
| 73 | \( 1 - 2iT - 73T^{2} \) |
| 79 | \( 1 - 3T + 79T^{2} \) |
| 83 | \( 1 - 8iT - 83T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + 5iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.600734221920180781536285501124, −8.127608211633955870219127793616, −6.81280066809831837516043212899, −6.16569792283875429237264787717, −5.35346509963234639913381341537, −4.86050885664956734290855483223, −3.77875162988051987180092245934, −2.66202008511184909679061756834, −2.27427924458029120633079065951, −0.29071545410054502107150941104,
1.23485176004994209808944674088, 1.87747653622027353258055656279, 3.42917160002777061399864829890, 4.05944301464951918035624823986, 4.72215036738542870631513036192, 6.06217489361783577611618005843, 6.63474521964704277139092233716, 7.19447473080166777717534365303, 7.956926097701186637737085357111, 8.572914128764437921643817179211