Properties

Label 2-33-1.1-c7-0-2
Degree $2$
Conductor $33$
Sign $1$
Analytic cond. $10.3087$
Root an. cond. $3.21071$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 19.3·2-s + 27·3-s + 247.·4-s + 336.·5-s − 523.·6-s − 879.·7-s − 2.31e3·8-s + 729·9-s − 6.51e3·10-s + 1.33e3·11-s + 6.68e3·12-s + 460.·13-s + 1.70e4·14-s + 9.07e3·15-s + 1.32e4·16-s + 2.49e4·17-s − 1.41e4·18-s − 2.47e3·19-s + 8.31e4·20-s − 2.37e4·21-s − 2.57e4·22-s + 1.05e5·23-s − 6.25e4·24-s + 3.47e4·25-s − 8.92e3·26-s + 1.96e4·27-s − 2.17e5·28-s + ⋯
L(s)  = 1  − 1.71·2-s + 0.577·3-s + 1.93·4-s + 1.20·5-s − 0.988·6-s − 0.968·7-s − 1.59·8-s + 0.333·9-s − 2.05·10-s + 0.301·11-s + 1.11·12-s + 0.0581·13-s + 1.65·14-s + 0.694·15-s + 0.806·16-s + 1.23·17-s − 0.570·18-s − 0.0826·19-s + 2.32·20-s − 0.559·21-s − 0.516·22-s + 1.80·23-s − 0.923·24-s + 0.445·25-s − 0.0996·26-s + 0.192·27-s − 1.87·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $1$
Analytic conductor: \(10.3087\)
Root analytic conductor: \(3.21071\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.115175005\)
\(L(\frac12)\) \(\approx\) \(1.115175005\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
11 \( 1 - 1.33e3T \)
good2 \( 1 + 19.3T + 128T^{2} \)
5 \( 1 - 336.T + 7.81e4T^{2} \)
7 \( 1 + 879.T + 8.23e5T^{2} \)
13 \( 1 - 460.T + 6.27e7T^{2} \)
17 \( 1 - 2.49e4T + 4.10e8T^{2} \)
19 \( 1 + 2.47e3T + 8.93e8T^{2} \)
23 \( 1 - 1.05e5T + 3.40e9T^{2} \)
29 \( 1 + 1.28e5T + 1.72e10T^{2} \)
31 \( 1 - 2.10e5T + 2.75e10T^{2} \)
37 \( 1 - 3.94e3T + 9.49e10T^{2} \)
41 \( 1 - 5.03e5T + 1.94e11T^{2} \)
43 \( 1 - 9.61e5T + 2.71e11T^{2} \)
47 \( 1 - 1.33e6T + 5.06e11T^{2} \)
53 \( 1 + 2.03e6T + 1.17e12T^{2} \)
59 \( 1 + 2.71e6T + 2.48e12T^{2} \)
61 \( 1 + 5.48e5T + 3.14e12T^{2} \)
67 \( 1 + 4.71e5T + 6.06e12T^{2} \)
71 \( 1 - 3.22e6T + 9.09e12T^{2} \)
73 \( 1 - 3.67e5T + 1.10e13T^{2} \)
79 \( 1 + 3.99e6T + 1.92e13T^{2} \)
83 \( 1 + 5.79e4T + 2.71e13T^{2} \)
89 \( 1 - 1.03e6T + 4.42e13T^{2} \)
97 \( 1 + 7.10e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.56882316659074613889592382761, −14.04569847760486786185005745882, −12.67654380498515770665014639496, −10.74834237437520131266032869389, −9.608229722204437014445829817084, −9.153107922119312846568116185085, −7.51919985911852597013658284710, −6.16641085540008548894515054368, −2.75464643051211002311515262324, −1.14283042662437233346125214717, 1.14283042662437233346125214717, 2.75464643051211002311515262324, 6.16641085540008548894515054368, 7.51919985911852597013658284710, 9.153107922119312846568116185085, 9.608229722204437014445829817084, 10.74834237437520131266032869389, 12.67654380498515770665014639496, 14.04569847760486786185005745882, 15.56882316659074613889592382761

Graph of the $Z$-function along the critical line