Properties

Label 2-33-1.1-c7-0-1
Degree $2$
Conductor $33$
Sign $1$
Analytic cond. $10.3087$
Root an. cond. $3.21071$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.40·2-s − 27·3-s − 122.·4-s − 505.·5-s + 64.8·6-s + 1.40e3·7-s + 600.·8-s + 729·9-s + 1.21e3·10-s − 1.33e3·11-s + 3.30e3·12-s − 4.33e3·13-s − 3.36e3·14-s + 1.36e4·15-s + 1.42e4·16-s + 2.85e4·17-s − 1.75e3·18-s − 5.37e3·19-s + 6.18e4·20-s − 3.78e4·21-s + 3.19e3·22-s − 8.54e4·23-s − 1.62e4·24-s + 1.77e5·25-s + 1.04e4·26-s − 1.96e4·27-s − 1.71e5·28-s + ⋯
L(s)  = 1  − 0.212·2-s − 0.577·3-s − 0.954·4-s − 1.80·5-s + 0.122·6-s + 1.54·7-s + 0.414·8-s + 0.333·9-s + 0.383·10-s − 0.301·11-s + 0.551·12-s − 0.547·13-s − 0.327·14-s + 1.04·15-s + 0.866·16-s + 1.40·17-s − 0.0707·18-s − 0.179·19-s + 1.72·20-s − 0.891·21-s + 0.0639·22-s − 1.46·23-s − 0.239·24-s + 2.27·25-s + 0.116·26-s − 0.192·27-s − 1.47·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $1$
Analytic conductor: \(10.3087\)
Root analytic conductor: \(3.21071\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(0.7175981286\)
\(L(\frac12)\) \(\approx\) \(0.7175981286\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 27T \)
11 \( 1 + 1.33e3T \)
good2 \( 1 + 2.40T + 128T^{2} \)
5 \( 1 + 505.T + 7.81e4T^{2} \)
7 \( 1 - 1.40e3T + 8.23e5T^{2} \)
13 \( 1 + 4.33e3T + 6.27e7T^{2} \)
17 \( 1 - 2.85e4T + 4.10e8T^{2} \)
19 \( 1 + 5.37e3T + 8.93e8T^{2} \)
23 \( 1 + 8.54e4T + 3.40e9T^{2} \)
29 \( 1 - 5.94e3T + 1.72e10T^{2} \)
31 \( 1 - 2.84e5T + 2.75e10T^{2} \)
37 \( 1 - 9.82e4T + 9.49e10T^{2} \)
41 \( 1 - 9.60e4T + 1.94e11T^{2} \)
43 \( 1 + 1.98e5T + 2.71e11T^{2} \)
47 \( 1 - 2.17e5T + 5.06e11T^{2} \)
53 \( 1 - 8.44e5T + 1.17e12T^{2} \)
59 \( 1 + 1.14e6T + 2.48e12T^{2} \)
61 \( 1 - 3.20e6T + 3.14e12T^{2} \)
67 \( 1 - 2.09e6T + 6.06e12T^{2} \)
71 \( 1 - 6.41e5T + 9.09e12T^{2} \)
73 \( 1 + 3.25e6T + 1.10e13T^{2} \)
79 \( 1 - 7.68e6T + 1.92e13T^{2} \)
83 \( 1 - 4.06e6T + 2.71e13T^{2} \)
89 \( 1 - 1.64e6T + 4.42e13T^{2} \)
97 \( 1 + 3.61e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.15135573466889985734975826668, −14.17720835345443643393402064150, −12.30487448005142951221979649038, −11.60983804246546302531416540358, −10.26430602955328430821602256398, −8.219846220628577470480357523172, −7.73795537709544526707996100357, −5.06677085602354374016002269664, −4.07821256261418294211626003997, −0.74013886104304199327858929722, 0.74013886104304199327858929722, 4.07821256261418294211626003997, 5.06677085602354374016002269664, 7.73795537709544526707996100357, 8.219846220628577470480357523172, 10.26430602955328430821602256398, 11.60983804246546302531416540358, 12.30487448005142951221979649038, 14.17720835345443643393402064150, 15.15135573466889985734975826668

Graph of the $Z$-function along the critical line