Properties

Label 2-33-33.2-c5-0-14
Degree $2$
Conductor $33$
Sign $-0.972 + 0.231i$
Analytic cond. $5.29266$
Root an. cond. $2.30057$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.95 − 9.09i)2-s + (14.4 − 5.95i)3-s + (−48.0 − 34.8i)4-s + (−91.6 + 29.7i)5-s + (−11.5 − 148. i)6-s + (70.5 − 97.1i)7-s + (−211. + 153. i)8-s + (172. − 171. i)9-s + 921. i·10-s + (277. − 289. i)11-s + (−899. − 216. i)12-s + (390. + 126. i)13-s + (−674. − 928. i)14-s + (−1.14e3 + 974. i)15-s + (185. + 571. i)16-s + (39.0 + 120. i)17-s + ⋯
L(s)  = 1  + (0.522 − 1.60i)2-s + (0.924 − 0.382i)3-s + (−1.50 − 1.09i)4-s + (−1.63 + 0.532i)5-s + (−0.131 − 1.68i)6-s + (0.544 − 0.749i)7-s + (−1.16 + 0.849i)8-s + (0.708 − 0.706i)9-s + 2.91i·10-s + (0.692 − 0.721i)11-s + (−1.80 − 0.434i)12-s + (0.640 + 0.208i)13-s + (−0.919 − 1.26i)14-s + (−1.31 + 1.11i)15-s + (0.181 + 0.557i)16-s + (0.0327 + 0.100i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.972 + 0.231i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.972 + 0.231i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $-0.972 + 0.231i$
Analytic conductor: \(5.29266\)
Root analytic conductor: \(2.30057\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (2, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :5/2),\ -0.972 + 0.231i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.239339 - 2.04091i\)
\(L(\frac12)\) \(\approx\) \(0.239339 - 2.04091i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-14.4 + 5.95i)T \)
11 \( 1 + (-277. + 289. i)T \)
good2 \( 1 + (-2.95 + 9.09i)T + (-25.8 - 18.8i)T^{2} \)
5 \( 1 + (91.6 - 29.7i)T + (2.52e3 - 1.83e3i)T^{2} \)
7 \( 1 + (-70.5 + 97.1i)T + (-5.19e3 - 1.59e4i)T^{2} \)
13 \( 1 + (-390. - 126. i)T + (3.00e5 + 2.18e5i)T^{2} \)
17 \( 1 + (-39.0 - 120. i)T + (-1.14e6 + 8.34e5i)T^{2} \)
19 \( 1 + (-1.06e3 - 1.46e3i)T + (-7.65e5 + 2.35e6i)T^{2} \)
23 \( 1 - 379. iT - 6.43e6T^{2} \)
29 \( 1 + (-582. - 423. i)T + (6.33e6 + 1.95e7i)T^{2} \)
31 \( 1 + (2.34e3 - 7.22e3i)T + (-2.31e7 - 1.68e7i)T^{2} \)
37 \( 1 + (9.26e3 + 6.73e3i)T + (2.14e7 + 6.59e7i)T^{2} \)
41 \( 1 + (-6.79e3 + 4.93e3i)T + (3.58e7 - 1.10e8i)T^{2} \)
43 \( 1 - 7.79e3iT - 1.47e8T^{2} \)
47 \( 1 + (1.57e3 + 2.17e3i)T + (-7.08e7 + 2.18e8i)T^{2} \)
53 \( 1 + (-2.56e4 - 8.31e3i)T + (3.38e8 + 2.45e8i)T^{2} \)
59 \( 1 + (7.74e3 - 1.06e4i)T + (-2.20e8 - 6.79e8i)T^{2} \)
61 \( 1 + (5.20e3 - 1.69e3i)T + (6.83e8 - 4.96e8i)T^{2} \)
67 \( 1 - 4.77e4T + 1.35e9T^{2} \)
71 \( 1 + (8.27e3 - 2.68e3i)T + (1.45e9 - 1.06e9i)T^{2} \)
73 \( 1 + (8.64e3 - 1.18e4i)T + (-6.40e8 - 1.97e9i)T^{2} \)
79 \( 1 + (5.41e4 + 1.75e4i)T + (2.48e9 + 1.80e9i)T^{2} \)
83 \( 1 + (1.54e4 + 4.75e4i)T + (-3.18e9 + 2.31e9i)T^{2} \)
89 \( 1 - 6.99e4iT - 5.58e9T^{2} \)
97 \( 1 + (5.48e3 - 1.68e4i)T + (-6.94e9 - 5.04e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.46502597519553287412354244971, −13.92309703626109616533230005367, −12.41592420371452816422279455318, −11.50982871607482558759681683990, −10.54721344555596402489955367699, −8.711584112307300286416611215184, −7.35629324940261493367357317198, −4.02318757426502425025734179829, −3.38423450733920810395483784993, −1.15064566431531651145941502413, 3.89636323270631711359115335638, 4.96531714467178209812138517318, 7.21428173380322641682920297367, 8.197875787771331652708292661243, 9.003909926054227278844932502929, 11.63646653204515946561537651947, 13.01003494133617150374653712622, 14.38830449856791756132555002214, 15.42835291931245645209116236742, 15.57136687976685401660325489956

Graph of the $Z$-function along the critical line