Properties

Label 2-33-11.4-c5-0-8
Degree $2$
Conductor $33$
Sign $-0.998 + 0.0618i$
Analytic cond. $5.29266$
Root an. cond. $2.30057$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−5.10 − 3.70i)2-s + (2.78 − 8.55i)3-s + (2.39 + 7.36i)4-s + (54.7 − 39.7i)5-s + (−45.9 + 33.3i)6-s + (−37.8 − 116. i)7-s + (−47.2 + 145. i)8-s + (−65.5 − 47.6i)9-s − 426.·10-s + (−315. + 248. i)11-s + 69.6·12-s + (−341. − 248. i)13-s + (−238. + 734. i)14-s + (−188. − 578. i)15-s + (980. − 712. i)16-s + (−766. + 556. i)17-s + ⋯
L(s)  = 1  + (−0.901 − 0.655i)2-s + (0.178 − 0.549i)3-s + (0.0747 + 0.230i)4-s + (0.978 − 0.710i)5-s + (−0.520 + 0.378i)6-s + (−0.291 − 0.898i)7-s + (−0.261 + 0.803i)8-s + (−0.269 − 0.195i)9-s − 1.34·10-s + (−0.786 + 0.618i)11-s + 0.139·12-s + (−0.561 − 0.407i)13-s + (−0.325 + 1.00i)14-s + (−0.215 − 0.664i)15-s + (0.957 − 0.695i)16-s + (−0.643 + 0.467i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 + 0.0618i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.998 + 0.0618i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $-0.998 + 0.0618i$
Analytic conductor: \(5.29266\)
Root analytic conductor: \(2.30057\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :5/2),\ -0.998 + 0.0618i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.0264653 - 0.854550i\)
\(L(\frac12)\) \(\approx\) \(0.0264653 - 0.854550i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-2.78 + 8.55i)T \)
11 \( 1 + (315. - 248. i)T \)
good2 \( 1 + (5.10 + 3.70i)T + (9.88 + 30.4i)T^{2} \)
5 \( 1 + (-54.7 + 39.7i)T + (965. - 2.97e3i)T^{2} \)
7 \( 1 + (37.8 + 116. i)T + (-1.35e4 + 9.87e3i)T^{2} \)
13 \( 1 + (341. + 248. i)T + (1.14e5 + 3.53e5i)T^{2} \)
17 \( 1 + (766. - 556. i)T + (4.38e5 - 1.35e6i)T^{2} \)
19 \( 1 + (-425. + 1.31e3i)T + (-2.00e6 - 1.45e6i)T^{2} \)
23 \( 1 - 4.75e3T + 6.43e6T^{2} \)
29 \( 1 + (751. + 2.31e3i)T + (-1.65e7 + 1.20e7i)T^{2} \)
31 \( 1 + (5.44e3 + 3.95e3i)T + (8.84e6 + 2.72e7i)T^{2} \)
37 \( 1 + (1.47e3 + 4.54e3i)T + (-5.61e7 + 4.07e7i)T^{2} \)
41 \( 1 + (2.52e3 - 7.77e3i)T + (-9.37e7 - 6.80e7i)T^{2} \)
43 \( 1 - 1.33e4T + 1.47e8T^{2} \)
47 \( 1 + (-8.94e3 + 2.75e4i)T + (-1.85e8 - 1.34e8i)T^{2} \)
53 \( 1 + (-7.66e3 - 5.57e3i)T + (1.29e8 + 3.97e8i)T^{2} \)
59 \( 1 + (-2.16e3 - 6.67e3i)T + (-5.78e8 + 4.20e8i)T^{2} \)
61 \( 1 + (-2.48e4 + 1.80e4i)T + (2.60e8 - 8.03e8i)T^{2} \)
67 \( 1 + 2.44e3T + 1.35e9T^{2} \)
71 \( 1 + (-5.19e4 + 3.77e4i)T + (5.57e8 - 1.71e9i)T^{2} \)
73 \( 1 + (-1.48e4 - 4.55e4i)T + (-1.67e9 + 1.21e9i)T^{2} \)
79 \( 1 + (6.62e4 + 4.81e4i)T + (9.50e8 + 2.92e9i)T^{2} \)
83 \( 1 + (1.56e4 - 1.13e4i)T + (1.21e9 - 3.74e9i)T^{2} \)
89 \( 1 + 5.61e4T + 5.58e9T^{2} \)
97 \( 1 + (-5.86e4 - 4.26e4i)T + (2.65e9 + 8.16e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.02885069910665372278345403836, −13.48278155830654584093253508102, −12.80167634448011821183290093619, −10.99595652769317884240656430964, −9.877280785442958100519787083009, −8.909946309633192176411221040153, −7.30426829341206810540739618067, −5.28022839312774204514443302873, −2.25963384495601108280514847871, −0.66898356107688537021889454871, 2.85151171126932428844207657732, 5.61359959192173653754190112518, 7.06154981913704227247822627425, 8.769320265758235392043465715120, 9.586087884755846087126450944971, 10.80246089527001504911901978095, 12.73886970446292995777407065854, 14.19041436532279985656183129986, 15.38734875316717829953607261499, 16.31148800233107032263224745031

Graph of the $Z$-function along the critical line