Properties

Label 2-33-11.3-c3-0-0
Degree $2$
Conductor $33$
Sign $-0.818 - 0.574i$
Analytic cond. $1.94706$
Root an. cond. $1.39537$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.02 + 1.47i)2-s + (0.927 + 2.85i)3-s + (−0.539 + 1.65i)4-s + (−8.44 − 6.13i)5-s + (−6.07 − 4.41i)6-s + (−10.1 + 31.1i)7-s + (−7.53 − 23.1i)8-s + (−7.28 + 5.29i)9-s + 26.0·10-s + (12.6 + 34.2i)11-s − 5.23·12-s + (59.2 − 43.0i)13-s + (−25.3 − 77.9i)14-s + (9.67 − 29.7i)15-s + (38.0 + 27.6i)16-s + (44.7 + 32.4i)17-s + ⋯
L(s)  = 1  + (−0.715 + 0.519i)2-s + (0.178 + 0.549i)3-s + (−0.0673 + 0.207i)4-s + (−0.755 − 0.548i)5-s + (−0.413 − 0.300i)6-s + (−0.546 + 1.68i)7-s + (−0.332 − 1.02i)8-s + (−0.269 + 0.195i)9-s + 0.825·10-s + (0.347 + 0.937i)11-s − 0.125·12-s + (1.26 − 0.918i)13-s + (−0.483 − 1.48i)14-s + (0.166 − 0.512i)15-s + (0.594 + 0.431i)16-s + (0.638 + 0.463i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.818 - 0.574i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.818 - 0.574i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33\)    =    \(3 \cdot 11\)
Sign: $-0.818 - 0.574i$
Analytic conductor: \(1.94706\)
Root analytic conductor: \(1.39537\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{33} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 33,\ (\ :3/2),\ -0.818 - 0.574i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.200172 + 0.633972i\)
\(L(\frac12)\) \(\approx\) \(0.200172 + 0.633972i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.927 - 2.85i)T \)
11 \( 1 + (-12.6 - 34.2i)T \)
good2 \( 1 + (2.02 - 1.47i)T + (2.47 - 7.60i)T^{2} \)
5 \( 1 + (8.44 + 6.13i)T + (38.6 + 118. i)T^{2} \)
7 \( 1 + (10.1 - 31.1i)T + (-277. - 201. i)T^{2} \)
13 \( 1 + (-59.2 + 43.0i)T + (678. - 2.08e3i)T^{2} \)
17 \( 1 + (-44.7 - 32.4i)T + (1.51e3 + 4.67e3i)T^{2} \)
19 \( 1 + (-27.9 - 86.1i)T + (-5.54e3 + 4.03e3i)T^{2} \)
23 \( 1 + 91.1T + 1.21e4T^{2} \)
29 \( 1 + (23.7 - 72.9i)T + (-1.97e4 - 1.43e4i)T^{2} \)
31 \( 1 + (18.6 - 13.5i)T + (9.20e3 - 2.83e4i)T^{2} \)
37 \( 1 + (-38.8 + 119. i)T + (-4.09e4 - 2.97e4i)T^{2} \)
41 \( 1 + (-43.2 - 133. i)T + (-5.57e4 + 4.05e4i)T^{2} \)
43 \( 1 - 146.T + 7.95e4T^{2} \)
47 \( 1 + (68.4 + 210. i)T + (-8.39e4 + 6.10e4i)T^{2} \)
53 \( 1 + (-35.5 + 25.8i)T + (4.60e4 - 1.41e5i)T^{2} \)
59 \( 1 + (124. - 382. i)T + (-1.66e5 - 1.20e5i)T^{2} \)
61 \( 1 + (-328. - 238. i)T + (7.01e4 + 2.15e5i)T^{2} \)
67 \( 1 - 221.T + 3.00e5T^{2} \)
71 \( 1 + (-606. - 440. i)T + (1.10e5 + 3.40e5i)T^{2} \)
73 \( 1 + (68.6 - 211. i)T + (-3.14e5 - 2.28e5i)T^{2} \)
79 \( 1 + (-954. + 693. i)T + (1.52e5 - 4.68e5i)T^{2} \)
83 \( 1 + (547. + 397. i)T + (1.76e5 + 5.43e5i)T^{2} \)
89 \( 1 - 1.05e3T + 7.04e5T^{2} \)
97 \( 1 + (-198. + 144. i)T + (2.82e5 - 8.68e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.33959455843402284544383510091, −15.83266812529374383414912999704, −14.94271224283849943382729282251, −12.71950113025708209448395331620, −12.03626425539602529805538209256, −9.923602876588567181554180581360, −8.787084771916623661692272837911, −7.998353157073153946090564481197, −5.88661804657719469367261424182, −3.67324718881870581718367017412, 0.790914546188214919336574994937, 3.61890354833987843907564749361, 6.52766807652638573261451184614, 7.88257078388935275236840308086, 9.396922299462231645443732301537, 10.85929524456993367132121237783, 11.51038723931540822952772803516, 13.59623476476450836005786504684, 14.16992502237985723429875309371, 15.97298613756146101575015579511

Graph of the $Z$-function along the critical line