Properties

Label 4-18e4-1.1-c5e2-0-3
Degree $4$
Conductor $104976$
Sign $1$
Analytic cond. $2700.29$
Root an. cond. $7.20863$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 54·5-s + 88·7-s + 540·11-s + 418·13-s − 1.18e3·17-s + 1.67e3·19-s − 4.10e3·23-s + 3.12e3·25-s − 594·29-s − 4.25e3·31-s + 4.75e3·35-s − 596·37-s + 1.72e4·41-s + 1.21e4·43-s − 1.29e3·47-s + 1.68e4·49-s − 3.89e4·53-s + 2.91e4·55-s − 7.66e3·59-s + 3.47e4·61-s + 2.25e4·65-s − 2.18e4·67-s + 9.37e4·71-s + 1.35e5·73-s + 4.75e4·77-s + 7.69e4·79-s + 6.77e4·83-s + ⋯
L(s)  = 1  + 0.965·5-s + 0.678·7-s + 1.34·11-s + 0.685·13-s − 0.996·17-s + 1.06·19-s − 1.61·23-s + 25-s − 0.131·29-s − 0.795·31-s + 0.655·35-s − 0.0715·37-s + 1.60·41-s + 0.997·43-s − 0.0855·47-s + 49-s − 1.90·53-s + 1.29·55-s − 0.286·59-s + 1.19·61-s + 0.662·65-s − 0.593·67-s + 2.20·71-s + 2.96·73-s + 0.913·77-s + 1.38·79-s + 1.07·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s+5/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(104976\)    =    \(2^{4} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(2700.29\)
Root analytic conductor: \(7.20863\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 104976,\ (\ :5/2, 5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(5.604977793\)
\(L(\frac12)\) \(\approx\) \(5.604977793\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 54 T - 209 T^{2} - 54 p^{5} T^{3} + p^{10} T^{4} \)
7$C_2^2$ \( 1 - 88 T - 9063 T^{2} - 88 p^{5} T^{3} + p^{10} T^{4} \)
11$C_2^2$ \( 1 - 540 T + 130549 T^{2} - 540 p^{5} T^{3} + p^{10} T^{4} \)
13$C_2^2$ \( 1 - 418 T - 196569 T^{2} - 418 p^{5} T^{3} + p^{10} T^{4} \)
17$C_2$ \( ( 1 + 594 T + p^{5} T^{2} )^{2} \)
19$C_2$ \( ( 1 - 44 p T + p^{5} T^{2} )^{2} \)
23$C_2^2$ \( 1 + 4104 T + 10406473 T^{2} + 4104 p^{5} T^{3} + p^{10} T^{4} \)
29$C_2^2$ \( 1 + 594 T - 20158313 T^{2} + 594 p^{5} T^{3} + p^{10} T^{4} \)
31$C_2^2$ \( 1 + 4256 T - 10515615 T^{2} + 4256 p^{5} T^{3} + p^{10} T^{4} \)
37$C_2$ \( ( 1 + 298 T + p^{5} T^{2} )^{2} \)
41$C_2^2$ \( 1 - 17226 T + 180878875 T^{2} - 17226 p^{5} T^{3} + p^{10} T^{4} \)
43$C_2^2$ \( 1 - 12100 T - 598443 T^{2} - 12100 p^{5} T^{3} + p^{10} T^{4} \)
47$C_2^2$ \( 1 + 1296 T - 227665391 T^{2} + 1296 p^{5} T^{3} + p^{10} T^{4} \)
53$C_2$ \( ( 1 + 19494 T + p^{5} T^{2} )^{2} \)
59$C_2^2$ \( 1 + 7668 T - 656126075 T^{2} + 7668 p^{5} T^{3} + p^{10} T^{4} \)
61$C_2^2$ \( 1 - 34738 T + 362132343 T^{2} - 34738 p^{5} T^{3} + p^{10} T^{4} \)
67$C_2^2$ \( 1 + 21812 T - 874361763 T^{2} + 21812 p^{5} T^{3} + p^{10} T^{4} \)
71$C_2$ \( ( 1 - 46872 T + p^{5} T^{2} )^{2} \)
73$C_2$ \( ( 1 - 67562 T + p^{5} T^{2} )^{2} \)
79$C_2^2$ \( 1 - 76912 T + 2838399345 T^{2} - 76912 p^{5} T^{3} + p^{10} T^{4} \)
83$C_2^2$ \( 1 - 67716 T + 646416013 T^{2} - 67716 p^{5} T^{3} + p^{10} T^{4} \)
89$C_2$ \( ( 1 + 29754 T + p^{5} T^{2} )^{2} \)
97$C_2^2$ \( 1 - 122398 T + 6393930147 T^{2} - 122398 p^{5} T^{3} + p^{10} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.92649702607682311703254955277, −10.89887011771914365320340156175, −9.807943831200822130288449857749, −9.655934411275165945831790647707, −9.187074444656611724322628695851, −8.828681445213981244861034284480, −8.139075808496025515233764145686, −7.80154171127378889501329440786, −7.07360021684453199247855318453, −6.58951439953734889794889125230, −6.07879253362114707887642589915, −5.76077477337314444184524114433, −5.04225698676996077440506787299, −4.50405718249056239814185247069, −3.82542783912059056199759849929, −3.42644155167109205238045327849, −2.14928993905842677493514034177, −2.12434343778050494847770796435, −1.17859324885779690518017578175, −0.68763713007213654333199162349, 0.68763713007213654333199162349, 1.17859324885779690518017578175, 2.12434343778050494847770796435, 2.14928993905842677493514034177, 3.42644155167109205238045327849, 3.82542783912059056199759849929, 4.50405718249056239814185247069, 5.04225698676996077440506787299, 5.76077477337314444184524114433, 6.07879253362114707887642589915, 6.58951439953734889794889125230, 7.07360021684453199247855318453, 7.80154171127378889501329440786, 8.139075808496025515233764145686, 8.828681445213981244861034284480, 9.187074444656611724322628695851, 9.655934411275165945831790647707, 9.807943831200822130288449857749, 10.89887011771914365320340156175, 10.92649702607682311703254955277

Graph of the $Z$-function along the critical line