Properties

Degree 10
Conductor $ 2^{10} \cdot 3^{20} $
Sign $-1$
Motivic weight 5
Primitive no
Self-dual yes
Analytic rank 5

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 21·5-s − 29·7-s + 177·11-s + 181·13-s − 1.14e3·17-s − 416·19-s + 399·23-s − 5.20e3·25-s − 6.03e3·29-s − 2.75e3·31-s + 609·35-s − 7.58e3·37-s − 1.84e4·41-s − 1.46e3·43-s − 2.51e4·47-s − 3.95e4·49-s − 5.84e4·53-s − 3.71e3·55-s − 9.05e4·59-s − 1.40e3·61-s − 3.80e3·65-s − 1.39e4·67-s − 1.14e5·71-s + 7.60e3·73-s − 5.13e3·77-s − 2.99e4·79-s − 2.28e5·83-s + ⋯
L(s)  = 1  − 0.375·5-s − 0.223·7-s + 0.441·11-s + 0.297·13-s − 0.956·17-s − 0.264·19-s + 0.157·23-s − 1.66·25-s − 1.33·29-s − 0.515·31-s + 0.0840·35-s − 0.910·37-s − 1.71·41-s − 0.121·43-s − 1.66·47-s − 2.35·49-s − 2.85·53-s − 0.165·55-s − 3.38·59-s − 0.0482·61-s − 0.111·65-s − 0.378·67-s − 2.69·71-s + 0.166·73-s − 0.0986·77-s − 0.540·79-s − 3.64·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{10} \cdot 3^{20}\right)^{s/2} \, \Gamma_{\C}(s)^{5} \, L(s)\cr=\mathstrut & -\,\Lambda(6-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{10} \cdot 3^{20}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{5} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

\( d \)  =  \(10\)
\( N \)  =  \(2^{10} \cdot 3^{20}\)
\( \varepsilon \)  =  $-1$
motivic weight  =  \(5\)
character  :  induced by $\chi_{324} (1, \cdot )$
primitive  :  no
self-dual  :  yes
analytic rank  =  \(5\)
Selberg data  =  \((10,\ 2^{10} \cdot 3^{20} ,\ ( \ : 5/2, 5/2, 5/2, 5/2, 5/2 ),\ -1 )\)
\(L(3)\)  \(=\)  \(0\)
\(L(\frac12)\)  \(=\)  \(0\)
\(L(\frac{7}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3\}$,\(F_p(T)\) is a polynomial of degree 10. If $p \in \{2,\;3\}$, then $F_p(T)$ is a polynomial of degree at most 9.
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2 \wr S_5$ \( 1 + 21 T + 5644 T^{2} + 319227 T^{3} + 444607 p^{2} T^{4} + 1519942932 T^{5} + 444607 p^{7} T^{6} + 319227 p^{10} T^{7} + 5644 p^{15} T^{8} + 21 p^{20} T^{9} + p^{25} T^{10} \)
7$C_2 \wr S_5$ \( 1 + 29 T + 40410 T^{2} + 2467167 T^{3} + 1121022921 T^{4} + 42673614444 T^{5} + 1121022921 p^{5} T^{6} + 2467167 p^{10} T^{7} + 40410 p^{15} T^{8} + 29 p^{20} T^{9} + p^{25} T^{10} \)
11$C_2 \wr S_5$ \( 1 - 177 T + 427561 T^{2} - 2122014 T^{3} + 77616186361 T^{4} + 7157256911361 T^{5} + 77616186361 p^{5} T^{6} - 2122014 p^{10} T^{7} + 427561 p^{15} T^{8} - 177 p^{20} T^{9} + p^{25} T^{10} \)
13$C_2 \wr S_5$ \( 1 - 181 T + 1045092 T^{2} - 87339735 T^{3} + 629954553255 T^{4} - 52722114809928 T^{5} + 629954553255 p^{5} T^{6} - 87339735 p^{10} T^{7} + 1045092 p^{15} T^{8} - 181 p^{20} T^{9} + p^{25} T^{10} \)
17$C_2 \wr S_5$ \( 1 + 1140 T + 4980550 T^{2} + 3443850354 T^{3} + 10068870522169 T^{4} + 5069379208548852 T^{5} + 10068870522169 p^{5} T^{6} + 3443850354 p^{10} T^{7} + 4980550 p^{15} T^{8} + 1140 p^{20} T^{9} + p^{25} T^{10} \)
19$C_2 \wr S_5$ \( 1 + 416 T + 5046258 T^{2} + 6215761044 T^{3} + 20272296121125 T^{4} + 15898268281316088 T^{5} + 20272296121125 p^{5} T^{6} + 6215761044 p^{10} T^{7} + 5046258 p^{15} T^{8} + 416 p^{20} T^{9} + p^{25} T^{10} \)
23$C_2 \wr S_5$ \( 1 - 399 T + 16236442 T^{2} + 15815242731 T^{3} + 4968768180959 p T^{4} + 214964375471995932 T^{5} + 4968768180959 p^{6} T^{6} + 15815242731 p^{10} T^{7} + 16236442 p^{15} T^{8} - 399 p^{20} T^{9} + p^{25} T^{10} \)
29$C_2 \wr S_5$ \( 1 + 6033 T + 32744932 T^{2} + 82954489011 T^{3} + 288237740873407 T^{4} + 1430006647746298968 T^{5} + 288237740873407 p^{5} T^{6} + 82954489011 p^{10} T^{7} + 32744932 p^{15} T^{8} + 6033 p^{20} T^{9} + p^{25} T^{10} \)
31$C_2 \wr S_5$ \( 1 + 89 p T + 62514558 T^{2} - 8483492775 T^{3} + 1879317626697489 T^{4} - 2373615527060533968 T^{5} + 1879317626697489 p^{5} T^{6} - 8483492775 p^{10} T^{7} + 62514558 p^{15} T^{8} + 89 p^{21} T^{9} + p^{25} T^{10} \)
37$C_2 \wr S_5$ \( 1 + 7586 T + 201201093 T^{2} + 803146672896 T^{3} + 19241810738464926 T^{4} + 60351714230064941916 T^{5} + 19241810738464926 p^{5} T^{6} + 803146672896 p^{10} T^{7} + 201201093 p^{15} T^{8} + 7586 p^{20} T^{9} + p^{25} T^{10} \)
41$C_2 \wr S_5$ \( 1 + 18435 T + 457528267 T^{2} + 6389512835910 T^{3} + 92046695080587061 T^{4} + \)\(99\!\cdots\!97\)\( T^{5} + 92046695080587061 p^{5} T^{6} + 6389512835910 p^{10} T^{7} + 457528267 p^{15} T^{8} + 18435 p^{20} T^{9} + p^{25} T^{10} \)
43$C_2 \wr S_5$ \( 1 + 1469 T + 274021497 T^{2} + 2209484086710 T^{3} + 59712901022608185 T^{4} + \)\(32\!\cdots\!87\)\( T^{5} + 59712901022608185 p^{5} T^{6} + 2209484086710 p^{10} T^{7} + 274021497 p^{15} T^{8} + 1469 p^{20} T^{9} + p^{25} T^{10} \)
47$C_2 \wr S_5$ \( 1 + 25155 T + 1034020258 T^{2} + 20179979725617 T^{3} + 464012894081647969 T^{4} + \)\(66\!\cdots\!16\)\( T^{5} + 464012894081647969 p^{5} T^{6} + 20179979725617 p^{10} T^{7} + 1034020258 p^{15} T^{8} + 25155 p^{20} T^{9} + p^{25} T^{10} \)
53$C_2 \wr S_5$ \( 1 + 58422 T + 3354568213 T^{2} + 110313236959296 T^{3} + 3390725554692289246 T^{4} + \)\(71\!\cdots\!28\)\( T^{5} + 3390725554692289246 p^{5} T^{6} + 110313236959296 p^{10} T^{7} + 3354568213 p^{15} T^{8} + 58422 p^{20} T^{9} + p^{25} T^{10} \)
59$C_2 \wr S_5$ \( 1 + 90537 T + 5365830529 T^{2} + 236000523803862 T^{3} + 8392018437003638425 T^{4} + \)\(24\!\cdots\!43\)\( T^{5} + 8392018437003638425 p^{5} T^{6} + 236000523803862 p^{10} T^{7} + 5365830529 p^{15} T^{8} + 90537 p^{20} T^{9} + p^{25} T^{10} \)
61$C_2 \wr S_5$ \( 1 + 23 p T + 3538874292 T^{2} + 2256100311765 T^{3} + 5454602684103950271 T^{4} + \)\(18\!\cdots\!56\)\( T^{5} + 5454602684103950271 p^{5} T^{6} + 2256100311765 p^{10} T^{7} + 3538874292 p^{15} T^{8} + 23 p^{21} T^{9} + p^{25} T^{10} \)
67$C_2 \wr S_5$ \( 1 + 13907 T + 4070090193 T^{2} - 10411373671926 T^{3} + 6695736735425021001 T^{4} - \)\(80\!\cdots\!07\)\( T^{5} + 6695736735425021001 p^{5} T^{6} - 10411373671926 p^{10} T^{7} + 4070090193 p^{15} T^{8} + 13907 p^{20} T^{9} + p^{25} T^{10} \)
71$C_2 \wr S_5$ \( 1 + 114684 T + 7758380659 T^{2} + 426246123888336 T^{3} + 19260501229393543450 T^{4} + \)\(77\!\cdots\!40\)\( T^{5} + 19260501229393543450 p^{5} T^{6} + 426246123888336 p^{10} T^{7} + 7758380659 p^{15} T^{8} + 114684 p^{20} T^{9} + p^{25} T^{10} \)
73$C_2 \wr S_5$ \( 1 - 7600 T + 3606834246 T^{2} - 31056473559714 T^{3} + 12288417972789256281 T^{4} - \)\(80\!\cdots\!84\)\( T^{5} + 12288417972789256281 p^{5} T^{6} - 31056473559714 p^{10} T^{7} + 3606834246 p^{15} T^{8} - 7600 p^{20} T^{9} + p^{25} T^{10} \)
79$C_2 \wr S_5$ \( 1 + 29993 T + 6251931678 T^{2} - 85699438105257 T^{3} + 15422207141619743649 T^{4} - \)\(73\!\cdots\!92\)\( T^{5} + 15422207141619743649 p^{5} T^{6} - 85699438105257 p^{10} T^{7} + 6251931678 p^{15} T^{8} + 29993 p^{20} T^{9} + p^{25} T^{10} \)
83$C_2 \wr S_5$ \( 1 + 228951 T + 373676246 p T^{2} + 2949331181889681 T^{3} + \)\(22\!\cdots\!25\)\( T^{4} + \)\(14\!\cdots\!60\)\( T^{5} + \)\(22\!\cdots\!25\)\( p^{5} T^{6} + 2949331181889681 p^{10} T^{7} + 373676246 p^{16} T^{8} + 228951 p^{20} T^{9} + p^{25} T^{10} \)
89$C_2 \wr S_5$ \( 1 + 299166 T + 52616244181 T^{2} + 6660261403977288 T^{3} + \)\(67\!\cdots\!10\)\( T^{4} + \)\(55\!\cdots\!64\)\( T^{5} + \)\(67\!\cdots\!10\)\( p^{5} T^{6} + 6660261403977288 p^{10} T^{7} + 52616244181 p^{15} T^{8} + 299166 p^{20} T^{9} + p^{25} T^{10} \)
97$C_2 \wr S_5$ \( 1 + 40541 T + 19537068819 T^{2} + 1527692999826186 T^{3} + \)\(22\!\cdots\!25\)\( T^{4} + \)\(18\!\cdots\!11\)\( T^{5} + \)\(22\!\cdots\!25\)\( p^{5} T^{6} + 1527692999826186 p^{10} T^{7} + 19537068819 p^{15} T^{8} + 40541 p^{20} T^{9} + p^{25} T^{10} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{10} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−6.67294852820168709232195406607, −6.47197516409793372379963857212, −6.39586654119470725133106153065, −6.33901350729370476817138475984, −6.30624198080997899257513307151, −5.55569526743377612113979719676, −5.48349930575854184872271367271, −5.30056133150604752703753672681, −5.24653281741732777704446569391, −5.02496035666943270180765860902, −4.36518321836775606719347977816, −4.32213646864380957059259828185, −4.14217288434362424546825074333, −4.12674446149982694823352759070, −3.81389466556305603483761432502, −3.28937023515789750104612842394, −3.24357623964346825309420156213, −2.76873424366301355636633439915, −2.76604282395064791780248206941, −2.75846139199883843758015648619, −1.69923780458545297895026541371, −1.66023429767524299783915574209, −1.64368616646693991397073991578, −1.40527025805441690791528503336, −1.32859678886697448740980562983, 0, 0, 0, 0, 0, 1.32859678886697448740980562983, 1.40527025805441690791528503336, 1.64368616646693991397073991578, 1.66023429767524299783915574209, 1.69923780458545297895026541371, 2.75846139199883843758015648619, 2.76604282395064791780248206941, 2.76873424366301355636633439915, 3.24357623964346825309420156213, 3.28937023515789750104612842394, 3.81389466556305603483761432502, 4.12674446149982694823352759070, 4.14217288434362424546825074333, 4.32213646864380957059259828185, 4.36518321836775606719347977816, 5.02496035666943270180765860902, 5.24653281741732777704446569391, 5.30056133150604752703753672681, 5.48349930575854184872271367271, 5.55569526743377612113979719676, 6.30624198080997899257513307151, 6.33901350729370476817138475984, 6.39586654119470725133106153065, 6.47197516409793372379963857212, 6.67294852820168709232195406607

Graph of the $Z$-function along the critical line