Properties

Label 4-18e4-1.1-c4e2-0-0
Degree $4$
Conductor $104976$
Sign $1$
Analytic cond. $1121.70$
Root an. cond. $5.78721$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 94·7-s − 146·13-s − 92·19-s − 625·25-s − 194·31-s − 4.12e3·37-s + 3.21e3·43-s + 2.40e3·49-s + 1.96e3·61-s − 5.90e3·67-s − 1.70e4·73-s − 7.68e3·79-s − 1.37e4·91-s + 1.88e4·97-s − 1.64e4·103-s + 4.40e4·109-s − 1.46e4·121-s + 127-s + 131-s − 8.64e3·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 1.91·7-s − 0.863·13-s − 0.254·19-s − 25-s − 0.201·31-s − 3.01·37-s + 1.73·43-s + 49-s + 0.528·61-s − 1.31·67-s − 3.20·73-s − 1.23·79-s − 1.65·91-s + 1.99·97-s − 1.54·103-s + 3.70·109-s − 121-s + 6.20e−5·127-s + 5.82e−5·131-s − 0.488·133-s + 5.32e−5·137-s + 5.17e−5·139-s + 4.50e−5·149-s + 4.38e−5·151-s + 4.05e−5·157-s + 3.76e−5·163-s + 3.58e−5·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104976 ^{s/2} \, \Gamma_{\C}(s+2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(104976\)    =    \(2^{4} \cdot 3^{8}\)
Sign: $1$
Analytic conductor: \(1121.70\)
Root analytic conductor: \(5.78721\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 104976,\ (\ :2, 2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(2.187599956\)
\(L(\frac12)\) \(\approx\) \(2.187599956\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )( 1 + p^{2} T + p^{4} T^{2} ) \)
7$C_2$ \( ( 1 - 71 T + p^{4} T^{2} )( 1 - 23 T + p^{4} T^{2} ) \)
11$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )( 1 + p^{2} T + p^{4} T^{2} ) \)
13$C_2$ \( ( 1 - 191 T + p^{4} T^{2} )( 1 + 337 T + p^{4} T^{2} ) \)
17$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
19$C_2$ \( ( 1 + 46 T + p^{4} T^{2} )^{2} \)
23$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )( 1 + p^{2} T + p^{4} T^{2} ) \)
29$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )( 1 + p^{2} T + p^{4} T^{2} ) \)
31$C_2$ \( ( 1 - 1559 T + p^{4} T^{2} )( 1 + 1753 T + p^{4} T^{2} ) \)
37$C_2$ \( ( 1 + 2062 T + p^{4} T^{2} )^{2} \)
41$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )( 1 + p^{2} T + p^{4} T^{2} ) \)
43$C_2$ \( ( 1 - 3191 T + p^{4} T^{2} )( 1 - 23 T + p^{4} T^{2} ) \)
47$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )( 1 + p^{2} T + p^{4} T^{2} ) \)
53$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
59$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )( 1 + p^{2} T + p^{4} T^{2} ) \)
61$C_2$ \( ( 1 - 7199 T + p^{4} T^{2} )( 1 + 5233 T + p^{4} T^{2} ) \)
67$C_2$ \( ( 1 - 2903 T + p^{4} T^{2} )( 1 + 8809 T + p^{4} T^{2} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
73$C_2$ \( ( 1 + 8542 T + p^{4} T^{2} )^{2} \)
79$C_2$ \( ( 1 - 4679 T + p^{4} T^{2} )( 1 + 12361 T + p^{4} T^{2} ) \)
83$C_2$ \( ( 1 - p^{2} T + p^{4} T^{2} )( 1 + p^{2} T + p^{4} T^{2} ) \)
89$C_1$$\times$$C_1$ \( ( 1 - p^{2} T )^{2}( 1 + p^{2} T )^{2} \)
97$C_2$ \( ( 1 - 9743 T + p^{4} T^{2} )( 1 - 9071 T + p^{4} T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.62211673402984883246434008318, −10.63156277366029214139866775196, −10.41619890118529838989236509930, −9.964052317132145616919301876945, −9.229467641415089542265967079520, −8.625994855220122846867806630663, −8.612951604170013644360341376752, −7.63824079867775720142912564671, −7.60803321889693999437652804560, −7.08271643432965905212898455274, −6.31710300278987614922113144894, −5.53547430072669212961725249524, −5.36337056360720982091495009544, −4.50711550412426078214905642859, −4.40612953814072141996745569462, −3.48154186504963024667381117671, −2.68431778446636784165323661547, −1.71790544221951973007950732851, −1.70592548071076871545317175983, −0.43099311119239613797876049890, 0.43099311119239613797876049890, 1.70592548071076871545317175983, 1.71790544221951973007950732851, 2.68431778446636784165323661547, 3.48154186504963024667381117671, 4.40612953814072141996745569462, 4.50711550412426078214905642859, 5.36337056360720982091495009544, 5.53547430072669212961725249524, 6.31710300278987614922113144894, 7.08271643432965905212898455274, 7.60803321889693999437652804560, 7.63824079867775720142912564671, 8.612951604170013644360341376752, 8.625994855220122846867806630663, 9.229467641415089542265967079520, 9.964052317132145616919301876945, 10.41619890118529838989236509930, 10.63156277366029214139866775196, 11.62211673402984883246434008318

Graph of the $Z$-function along the critical line