Properties

Label 2-18e2-27.23-c2-0-0
Degree $2$
Conductor $324$
Sign $-0.996 - 0.0836i$
Analytic cond. $8.82836$
Root an. cond. $2.97125$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.92 − 0.515i)5-s + (0.715 − 0.600i)7-s + (−5.89 + 1.04i)11-s + (−9.53 + 3.47i)13-s + (−6.81 − 3.93i)17-s + (−2.29 − 3.97i)19-s + (−22.9 + 27.3i)23-s + (−15.2 − 5.53i)25-s + (−3.20 + 8.80i)29-s + (−41.5 − 34.8i)31-s + (−2.40 + 1.38i)35-s + (−9.21 + 15.9i)37-s + (3.70 + 10.1i)41-s + (−9.70 − 55.0i)43-s + (46.8 + 55.8i)47-s + ⋯
L(s)  = 1  + (−0.584 − 0.103i)5-s + (0.102 − 0.0858i)7-s + (−0.536 + 0.0945i)11-s + (−0.733 + 0.266i)13-s + (−0.400 − 0.231i)17-s + (−0.120 − 0.208i)19-s + (−0.996 + 1.18i)23-s + (−0.608 − 0.221i)25-s + (−0.110 + 0.303i)29-s + (−1.34 − 1.12i)31-s + (−0.0686 + 0.0396i)35-s + (−0.249 + 0.431i)37-s + (0.0903 + 0.248i)41-s + (−0.225 − 1.28i)43-s + (0.997 + 1.18i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.996 - 0.0836i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.996 - 0.0836i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(324\)    =    \(2^{2} \cdot 3^{4}\)
Sign: $-0.996 - 0.0836i$
Analytic conductor: \(8.82836\)
Root analytic conductor: \(2.97125\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{324} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 324,\ (\ :1),\ -0.996 - 0.0836i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.00127522 + 0.0304300i\)
\(L(\frac12)\) \(\approx\) \(0.00127522 + 0.0304300i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + (2.92 + 0.515i)T + (23.4 + 8.55i)T^{2} \)
7 \( 1 + (-0.715 + 0.600i)T + (8.50 - 48.2i)T^{2} \)
11 \( 1 + (5.89 - 1.04i)T + (113. - 41.3i)T^{2} \)
13 \( 1 + (9.53 - 3.47i)T + (129. - 108. i)T^{2} \)
17 \( 1 + (6.81 + 3.93i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (2.29 + 3.97i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (22.9 - 27.3i)T + (-91.8 - 520. i)T^{2} \)
29 \( 1 + (3.20 - 8.80i)T + (-644. - 540. i)T^{2} \)
31 \( 1 + (41.5 + 34.8i)T + (166. + 946. i)T^{2} \)
37 \( 1 + (9.21 - 15.9i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-3.70 - 10.1i)T + (-1.28e3 + 1.08e3i)T^{2} \)
43 \( 1 + (9.70 + 55.0i)T + (-1.73e3 + 632. i)T^{2} \)
47 \( 1 + (-46.8 - 55.8i)T + (-383. + 2.17e3i)T^{2} \)
53 \( 1 + 44.8iT - 2.80e3T^{2} \)
59 \( 1 + (81.5 + 14.3i)T + (3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (-47.6 + 40.0i)T + (646. - 3.66e3i)T^{2} \)
67 \( 1 + (31.9 - 11.6i)T + (3.43e3 - 2.88e3i)T^{2} \)
71 \( 1 + (60.7 + 35.0i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (-68.4 - 118. i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (-41.4 - 15.0i)T + (4.78e3 + 4.01e3i)T^{2} \)
83 \( 1 + (-31.4 + 86.3i)T + (-5.27e3 - 4.42e3i)T^{2} \)
89 \( 1 + (-86.0 + 49.6i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (4.81 + 27.3i)T + (-8.84e3 + 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.79020706037754520221529386319, −11.05131920475923609972366276493, −9.950290274452650117754255394163, −9.096041356665007123102620787241, −7.86178731486273608847266996471, −7.31388032765016781125072839169, −5.91825526340665086652107191411, −4.77061634932074214393182021568, −3.68592265764612284624812389890, −2.12226676294836783568671824197, 0.01334333292122971524020124094, 2.22022553323906335058350424315, 3.65822948340043852832783828395, 4.82562333717299500937708007035, 5.98513978300333841355600328967, 7.23387996976193781463354685983, 8.021348994816016024891108052039, 8.975695634777488660443485394312, 10.18585554906922556667784815977, 10.86889148054421317843746483712

Graph of the $Z$-function along the critical line