Properties

Label 16-18e16-1.1-c1e8-0-1
Degree $16$
Conductor $1.214\times 10^{20}$
Sign $1$
Analytic cond. $2007.13$
Root an. cond. $1.60846$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·4-s − 8·13-s + 4·16-s + 8·25-s − 8·37-s − 28·49-s − 32·52-s − 20·61-s − 16·64-s + 64·73-s − 32·97-s + 32·100-s − 80·109-s + 44·121-s + 127-s + 131-s + 137-s + 139-s − 32·148-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + ⋯
L(s)  = 1  + 2·4-s − 2.21·13-s + 16-s + 8/5·25-s − 1.31·37-s − 4·49-s − 4.43·52-s − 2.56·61-s − 2·64-s + 7.49·73-s − 3.24·97-s + 16/5·100-s − 7.66·109-s + 4·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.63·148-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{32}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{32}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(16\)
Conductor: \(2^{16} \cdot 3^{32}\)
Sign: $1$
Analytic conductor: \(2007.13\)
Root analytic conductor: \(1.60846\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((16,\ 2^{16} \cdot 3^{32} ,\ ( \ : [1/2]^{8} ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.816211629\)
\(L(\frac12)\) \(\approx\) \(1.816211629\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( ( 1 - p T^{2} + p^{2} T^{4} )^{2} \)
3 \( 1 \)
good5 \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2}( 1 + 8 T^{2} + 39 T^{4} + 8 p^{2} T^{6} + p^{4} T^{8} ) \)
7 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
11 \( ( 1 - p T^{2} + p^{2} T^{4} )^{4} \)
13 \( ( 1 + 4 T + p T^{2} )^{4}( 1 - 4 T + 3 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
17 \( ( 1 - 16 T^{2} - 33 T^{4} - 16 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
19 \( ( 1 - p T^{2} )^{8} \)
23 \( ( 1 - p T^{2} + p^{2} T^{4} )^{4} \)
29 \( ( 1 + 40 T^{2} + p^{2} T^{4} )^{2}( 1 - 40 T^{2} + 759 T^{4} - 40 p^{2} T^{6} + p^{4} T^{8} ) \)
31 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
37 \( ( 1 + 2 T - 33 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{4} \)
41 \( ( 1 + 80 T^{2} + 4719 T^{4} + 80 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
43 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
47 \( ( 1 - p T^{2} + p^{2} T^{4} )^{4} \)
53 \( ( 1 - 56 T^{2} + p^{2} T^{4} )^{4} \)
59 \( ( 1 - p T^{2} + p^{2} T^{4} )^{4} \)
61 \( ( 1 + 10 T + p T^{2} )^{4}( 1 - 10 T + 39 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
67 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
71 \( ( 1 + p T^{2} )^{8} \)
73 \( ( 1 - 16 T + 183 T^{2} - 16 p T^{3} + p^{2} T^{4} )^{4} \)
79 \( ( 1 + p T^{2} + p^{2} T^{4} )^{4} \)
83 \( ( 1 - p T^{2} + p^{2} T^{4} )^{4} \)
89 \( ( 1 - 160 T^{2} + 17679 T^{4} - 160 p^{2} T^{6} + p^{4} T^{8} )^{2} \)
97 \( ( 1 + 8 T - 33 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.10781939722747765319429414615, −5.04221340443101416748257459680, −5.03982505553591932495899511758, −4.88578337414475415311172885628, −4.66938129933162497760007815262, −4.48379095323540737101875717723, −4.25561315805366334868006020343, −4.16376931893620988673895029856, −3.97847739302993635595370724472, −3.83498176634655985044399833025, −3.52620164722905384156990913473, −3.49743207878092520574205188303, −3.08241456519540723097113642259, −2.95488808405698567506165412481, −2.88063652577383678518508707843, −2.84204931387701837945935239171, −2.69895940520614535449122510669, −2.41355534868017725997776568560, −2.04050369705806117574202086766, −1.94901573889275965182356239732, −1.79709734849856550387382991267, −1.69829120998601007108540791821, −1.34691418485711503987204381741, −0.883837178750420943295331817178, −0.28733921152702162984702211301, 0.28733921152702162984702211301, 0.883837178750420943295331817178, 1.34691418485711503987204381741, 1.69829120998601007108540791821, 1.79709734849856550387382991267, 1.94901573889275965182356239732, 2.04050369705806117574202086766, 2.41355534868017725997776568560, 2.69895940520614535449122510669, 2.84204931387701837945935239171, 2.88063652577383678518508707843, 2.95488808405698567506165412481, 3.08241456519540723097113642259, 3.49743207878092520574205188303, 3.52620164722905384156990913473, 3.83498176634655985044399833025, 3.97847739302993635595370724472, 4.16376931893620988673895029856, 4.25561315805366334868006020343, 4.48379095323540737101875717723, 4.66938129933162497760007815262, 4.88578337414475415311172885628, 5.03982505553591932495899511758, 5.04221340443101416748257459680, 5.10781939722747765319429414615

Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.