Properties

Label 2-322-23.12-c1-0-8
Degree $2$
Conductor $322$
Sign $0.968 - 0.249i$
Analytic cond. $2.57118$
Root an. cond. $1.60349$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.841 − 0.540i)2-s + (−0.311 + 2.16i)3-s + (0.415 − 0.909i)4-s + (3.63 − 1.06i)5-s + (0.909 + 1.99i)6-s + (0.654 + 0.755i)7-s + (−0.142 − 0.989i)8-s + (−1.71 − 0.504i)9-s + (2.48 − 2.86i)10-s + (−4.18 − 2.69i)11-s + (1.84 + 1.18i)12-s + (−0.479 + 0.553i)13-s + (0.959 + 0.281i)14-s + (1.17 + 8.20i)15-s + (−0.654 − 0.755i)16-s + (1.29 + 2.82i)17-s + ⋯
L(s)  = 1  + (0.594 − 0.382i)2-s + (−0.179 + 1.25i)3-s + (0.207 − 0.454i)4-s + (1.62 − 0.477i)5-s + (0.371 + 0.812i)6-s + (0.247 + 0.285i)7-s + (−0.0503 − 0.349i)8-s + (−0.573 − 0.168i)9-s + (0.784 − 0.905i)10-s + (−1.26 − 0.811i)11-s + (0.531 + 0.341i)12-s + (−0.132 + 0.153i)13-s + (0.256 + 0.0752i)14-s + (0.304 + 2.11i)15-s + (−0.163 − 0.188i)16-s + (0.313 + 0.686i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 322 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 - 0.249i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 322 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 - 0.249i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(322\)    =    \(2 \cdot 7 \cdot 23\)
Sign: $0.968 - 0.249i$
Analytic conductor: \(2.57118\)
Root analytic conductor: \(1.60349\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{322} (127, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 322,\ (\ :1/2),\ 0.968 - 0.249i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.07750 + 0.263532i\)
\(L(\frac12)\) \(\approx\) \(2.07750 + 0.263532i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.841 + 0.540i)T \)
7 \( 1 + (-0.654 - 0.755i)T \)
23 \( 1 + (0.648 - 4.75i)T \)
good3 \( 1 + (0.311 - 2.16i)T + (-2.87 - 0.845i)T^{2} \)
5 \( 1 + (-3.63 + 1.06i)T + (4.20 - 2.70i)T^{2} \)
11 \( 1 + (4.18 + 2.69i)T + (4.56 + 10.0i)T^{2} \)
13 \( 1 + (0.479 - 0.553i)T + (-1.85 - 12.8i)T^{2} \)
17 \( 1 + (-1.29 - 2.82i)T + (-11.1 + 12.8i)T^{2} \)
19 \( 1 + (-0.406 + 0.890i)T + (-12.4 - 14.3i)T^{2} \)
29 \( 1 + (0.0957 + 0.209i)T + (-18.9 + 21.9i)T^{2} \)
31 \( 1 + (1.20 + 8.41i)T + (-29.7 + 8.73i)T^{2} \)
37 \( 1 + (5.60 + 1.64i)T + (31.1 + 20.0i)T^{2} \)
41 \( 1 + (-0.499 + 0.146i)T + (34.4 - 22.1i)T^{2} \)
43 \( 1 + (1.47 - 10.2i)T + (-41.2 - 12.1i)T^{2} \)
47 \( 1 + 11.5T + 47T^{2} \)
53 \( 1 + (1.08 + 1.25i)T + (-7.54 + 52.4i)T^{2} \)
59 \( 1 + (-7.56 + 8.73i)T + (-8.39 - 58.3i)T^{2} \)
61 \( 1 + (1.65 + 11.5i)T + (-58.5 + 17.1i)T^{2} \)
67 \( 1 + (3.56 - 2.29i)T + (27.8 - 60.9i)T^{2} \)
71 \( 1 + (-3.45 + 2.21i)T + (29.4 - 64.5i)T^{2} \)
73 \( 1 + (-3.34 + 7.32i)T + (-47.8 - 55.1i)T^{2} \)
79 \( 1 + (-2.51 + 2.90i)T + (-11.2 - 78.1i)T^{2} \)
83 \( 1 + (5.41 + 1.59i)T + (69.8 + 44.8i)T^{2} \)
89 \( 1 + (2.52 - 17.5i)T + (-85.3 - 25.0i)T^{2} \)
97 \( 1 + (-7.31 + 2.14i)T + (81.6 - 52.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.40171493610638878626002364041, −10.67663899276205820890343841135, −9.838721412208118982007184499171, −9.384122746980765107773785091856, −8.100182097759248102434348306242, −6.16270630260500879561727073560, −5.41104670833952204001159667250, −4.85758496861839516924559046268, −3.36846406719437124908768040769, −1.96390554674323635700478484611, 1.80307079962809888516330579745, 2.78139449417463930768080189369, 4.96767507082717702057463952753, 5.73872299800635618777035464716, 6.85141210634413724633121307585, 7.25672962299105414821506838746, 8.476294559682566230032247363939, 9.982660945874659327781901711434, 10.55196482796965429195267187434, 11.98402817002558543986513232297

Graph of the $Z$-function along the critical line