Properties

Label 8-322e4-1.1-c1e4-0-0
Degree $8$
Conductor $10750371856$
Sign $1$
Analytic cond. $43.7050$
Root an. cond. $1.60349$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 10·4-s − 20·8-s + 8·9-s + 35·16-s − 32·18-s + 16·23-s + 8·25-s − 32·29-s − 56·32-s + 80·36-s − 64·46-s − 14·49-s − 32·50-s + 128·58-s + 84·64-s − 32·71-s − 160·72-s + 30·81-s + 160·92-s + 56·98-s + 80·100-s − 320·116-s + 44·121-s + 127-s − 120·128-s + 131-s + ⋯
L(s)  = 1  − 2.82·2-s + 5·4-s − 7.07·8-s + 8/3·9-s + 35/4·16-s − 7.54·18-s + 3.33·23-s + 8/5·25-s − 5.94·29-s − 9.89·32-s + 40/3·36-s − 9.43·46-s − 2·49-s − 4.52·50-s + 16.8·58-s + 21/2·64-s − 3.79·71-s − 18.8·72-s + 10/3·81-s + 16.6·92-s + 5.65·98-s + 8·100-s − 29.7·116-s + 4·121-s + 0.0887·127-s − 10.6·128-s + 0.0873·131-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 7^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{4} \cdot 7^{4} \cdot 23^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{4} \cdot 7^{4} \cdot 23^{4}\)
Sign: $1$
Analytic conductor: \(43.7050\)
Root analytic conductor: \(1.60349\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{4} \cdot 7^{4} \cdot 23^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.5934152104\)
\(L(\frac12)\) \(\approx\) \(0.5934152104\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_1$ \( ( 1 + T )^{4} \)
7$C_2$ \( ( 1 + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
good3$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
5$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - p T^{2} )^{4} \)
13$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 + 20 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{4} \)
29$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 - 60 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
41$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
47$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
59$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 108 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - p T^{2} )^{4} \)
71$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 18 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 46 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 58 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 52 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 180 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.595898263026719871588997885137, −8.356604533998303811219512243228, −7.86715343361403798835407394038, −7.55569508793597176489721116091, −7.35889979155232871861819320709, −7.27445595820734166925216896060, −7.26668318379518254919782398522, −6.87323420803761577597016644613, −6.83759597024854198131915824309, −6.31397406787443349020787249560, −5.98996458540410725304662528252, −5.73449253747493668126872226590, −5.34744499399178395964628896284, −5.11190248178823588154160193147, −4.64460010408824779749993389760, −4.38188763453027629351225481002, −4.03000668436828988501673781916, −3.37895924201454595072450050047, −3.22964408242373636615264868968, −3.10003972301179746458859010178, −2.26255319679862247724222898727, −1.85258843189487934132622444710, −1.53845996156559291627729904806, −1.38766537805611112302199673759, −0.58993131989671849072367259498, 0.58993131989671849072367259498, 1.38766537805611112302199673759, 1.53845996156559291627729904806, 1.85258843189487934132622444710, 2.26255319679862247724222898727, 3.10003972301179746458859010178, 3.22964408242373636615264868968, 3.37895924201454595072450050047, 4.03000668436828988501673781916, 4.38188763453027629351225481002, 4.64460010408824779749993389760, 5.11190248178823588154160193147, 5.34744499399178395964628896284, 5.73449253747493668126872226590, 5.98996458540410725304662528252, 6.31397406787443349020787249560, 6.83759597024854198131915824309, 6.87323420803761577597016644613, 7.26668318379518254919782398522, 7.27445595820734166925216896060, 7.35889979155232871861819320709, 7.55569508793597176489721116091, 7.86715343361403798835407394038, 8.356604533998303811219512243228, 8.595898263026719871588997885137

Graph of the $Z$-function along the critical line