Properties

Label 4-3200e2-1.1-c1e2-0-3
Degree $4$
Conductor $10240000$
Sign $1$
Analytic cond. $652.911$
Root an. cond. $5.05491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s − 3·9-s − 14·27-s + 8·31-s − 8·37-s + 6·41-s − 16·43-s − 2·49-s − 24·53-s + 18·67-s − 32·71-s − 8·79-s − 4·81-s − 2·83-s − 26·89-s + 16·93-s + 26·107-s − 16·111-s + 13·121-s + 12·123-s + 127-s − 32·129-s + 131-s + 137-s + 139-s − 4·147-s + 149-s + ⋯
L(s)  = 1  + 1.15·3-s − 9-s − 2.69·27-s + 1.43·31-s − 1.31·37-s + 0.937·41-s − 2.43·43-s − 2/7·49-s − 3.29·53-s + 2.19·67-s − 3.79·71-s − 0.900·79-s − 4/9·81-s − 0.219·83-s − 2.75·89-s + 1.65·93-s + 2.51·107-s − 1.51·111-s + 1.18·121-s + 1.08·123-s + 0.0887·127-s − 2.81·129-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 0.329·147-s + 0.0819·149-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10240000\)    =    \(2^{14} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(652.911\)
Root analytic conductor: \(5.05491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10240000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.230773999\)
\(L(\frac12)\) \(\approx\) \(1.230773999\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
13$C_2$ \( ( 1 + p T^{2} )^{2} \)
17$C_2^2$ \( 1 - 33 T^{2} + p^{2} T^{4} \)
19$C_2^2$ \( 1 + 11 T^{2} + p^{2} T^{4} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
31$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
43$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
59$C_2^2$ \( 1 - 54 T^{2} + p^{2} T^{4} \)
61$C_2^2$ \( 1 - 106 T^{2} + p^{2} T^{4} \)
67$C_2$ \( ( 1 - 9 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 + 16 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
89$C_2$ \( ( 1 + 13 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.894963425889064803651097854305, −8.468323593157476187460836922501, −8.201719620958858160263906062570, −7.912797010012268664280487930204, −7.48904166211153461211905980389, −7.06131983411534643152493473078, −6.60678698787886229234535438840, −6.15036726561459343238310876851, −5.97761365514370637849146937989, −5.28842577470225479057146565050, −5.16825691585519940113257088253, −4.37948113771519708562207378527, −4.32428036316403344048825060858, −3.32670329954205519514977744063, −3.30373326282026763388137525611, −2.96276888779833845617795639777, −2.44537855772120569958870141478, −1.81464293586862136607624154828, −1.45588449903174021487327293218, −0.29715567679261336141009170021, 0.29715567679261336141009170021, 1.45588449903174021487327293218, 1.81464293586862136607624154828, 2.44537855772120569958870141478, 2.96276888779833845617795639777, 3.30373326282026763388137525611, 3.32670329954205519514977744063, 4.32428036316403344048825060858, 4.37948113771519708562207378527, 5.16825691585519940113257088253, 5.28842577470225479057146565050, 5.97761365514370637849146937989, 6.15036726561459343238310876851, 6.60678698787886229234535438840, 7.06131983411534643152493473078, 7.48904166211153461211905980389, 7.912797010012268664280487930204, 8.201719620958858160263906062570, 8.468323593157476187460836922501, 8.894963425889064803651097854305

Graph of the $Z$-function along the critical line