Properties

Label 8-3200e4-1.1-c1e4-0-3
Degree $8$
Conductor $1048576.000\times 10^{8}$
Sign $1$
Analytic cond. $426293.$
Root an. cond. $5.05491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 12·9-s − 8·41-s − 12·49-s + 90·81-s − 56·89-s − 36·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 12·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + 229-s + ⋯
L(s)  = 1  + 4·9-s − 1.24·41-s − 1.71·49-s + 10·81-s − 5.93·89-s − 3.27·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.923·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + 0.0660·229-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(426293.\)
Root analytic conductor: \(5.05491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.084842853\)
\(L(\frac12)\) \(\approx\) \(1.084842853\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2$ \( ( 1 - p T^{2} )^{4} \)
7$C_2^2$ \( ( 1 + 6 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2}( 1 + 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( ( 1 - 6 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 + p T^{2} )^{4} \)
19$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
23$C_2^2$ \( ( 1 - 26 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - p T^{2} )^{4} \)
31$C_2$ \( ( 1 + p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 54 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
43$C_2$ \( ( 1 - p T^{2} )^{4} \)
47$C_2^2$ \( ( 1 + 86 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 - 14 T + p T^{2} )^{2}( 1 + 14 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 - p T^{2} )^{4} \)
67$C_2$ \( ( 1 - p T^{2} )^{4} \)
71$C_2$ \( ( 1 + p T^{2} )^{4} \)
73$C_2$ \( ( 1 + p T^{2} )^{4} \)
79$C_2$ \( ( 1 + p T^{2} )^{4} \)
83$C_2$ \( ( 1 - p T^{2} )^{4} \)
89$C_2$ \( ( 1 + 14 T + p T^{2} )^{4} \)
97$C_2$ \( ( 1 + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.36698517110010895693143815647, −5.89436892914822258699754208133, −5.61279634063926137773239755657, −5.57770383685539705263763834450, −5.30999175974862547841902186189, −4.98174706947258424915951031379, −4.80994258513261655632253113213, −4.80964536829037161654070140210, −4.40690917721682521284746137494, −4.26084194577213046080715369399, −4.10574934842512539013879318888, −3.98681574946037135357774559178, −3.69555219287335793129586724840, −3.55783863226895609980857454266, −3.17853737809823398660216616788, −2.92889693527705747627755365726, −2.77270984437400685218984501930, −2.38228239114615263251717266284, −1.98061311870984812950746836486, −1.81343494848902307280838838410, −1.67436883527775442014440289605, −1.33448767356358848593747205361, −1.06386010922047019019308053790, −1.00004350701790235168483505505, −0.12894277157611894695310244405, 0.12894277157611894695310244405, 1.00004350701790235168483505505, 1.06386010922047019019308053790, 1.33448767356358848593747205361, 1.67436883527775442014440289605, 1.81343494848902307280838838410, 1.98061311870984812950746836486, 2.38228239114615263251717266284, 2.77270984437400685218984501930, 2.92889693527705747627755365726, 3.17853737809823398660216616788, 3.55783863226895609980857454266, 3.69555219287335793129586724840, 3.98681574946037135357774559178, 4.10574934842512539013879318888, 4.26084194577213046080715369399, 4.40690917721682521284746137494, 4.80964536829037161654070140210, 4.80994258513261655632253113213, 4.98174706947258424915951031379, 5.30999175974862547841902186189, 5.57770383685539705263763834450, 5.61279634063926137773239755657, 5.89436892914822258699754208133, 6.36698517110010895693143815647

Graph of the $Z$-function along the critical line