Properties

Label 8-3200e4-1.1-c1e4-0-9
Degree $8$
Conductor $1.049\times 10^{14}$
Sign $1$
Analytic cond. $426293.$
Root an. cond. $5.05491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·9-s − 24·17-s − 32·41-s + 8·49-s + 24·73-s + 30·81-s − 24·89-s − 40·97-s + 40·113-s − 20·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 192·153-s + 157-s + 163-s + 167-s + 44·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + ⋯
L(s)  = 1  + 8/3·9-s − 5.82·17-s − 4.99·41-s + 8/7·49-s + 2.80·73-s + 10/3·81-s − 2.54·89-s − 4.06·97-s + 3.76·113-s − 1.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 15.5·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 3.38·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{28} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{28} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(426293.\)
Root analytic conductor: \(5.05491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{28} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7792892518\)
\(L(\frac12)\) \(\approx\) \(0.7792892518\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 10 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
19$C_2^2$ \( ( 1 - 30 T^{2} + p^{2} T^{4} )^{2} \)
23$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
31$C_2^2$ \( ( 1 + 54 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )^{2}( 1 + 12 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
43$C_2^2$ \( ( 1 - 84 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 92 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 - 102 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 74 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 116 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 + 134 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
79$C_2^2$ \( ( 1 - 130 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 - 4 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
97$C_2$ \( ( 1 + 10 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.31192599994629443816179421541, −6.13750876012166040545444477804, −5.67807430364811971678562893232, −5.34875685075280458305508789334, −5.34011654922641314625779430203, −5.05221487771172827511651040678, −4.81829835325462410953757372426, −4.52408103662973909781699198621, −4.48101294386227015340897161105, −4.46536479420125400518651568974, −4.15549126709171501446856606202, −3.77263282140169461112918312702, −3.74615023843914494026088102957, −3.73860134702209565605510752218, −3.14214245085775495247024182010, −2.82336084462008636173033952304, −2.66687396725846354100161100346, −2.29601995891341981858499192254, −2.16724578394476069021648893376, −1.75155587832882000337387975984, −1.72950783519311556131506506940, −1.63171887486124918380389279639, −1.11046800699204804839025176366, −0.52910810802708064070589152590, −0.16232167247119800372126578819, 0.16232167247119800372126578819, 0.52910810802708064070589152590, 1.11046800699204804839025176366, 1.63171887486124918380389279639, 1.72950783519311556131506506940, 1.75155587832882000337387975984, 2.16724578394476069021648893376, 2.29601995891341981858499192254, 2.66687396725846354100161100346, 2.82336084462008636173033952304, 3.14214245085775495247024182010, 3.73860134702209565605510752218, 3.74615023843914494026088102957, 3.77263282140169461112918312702, 4.15549126709171501446856606202, 4.46536479420125400518651568974, 4.48101294386227015340897161105, 4.52408103662973909781699198621, 4.81829835325462410953757372426, 5.05221487771172827511651040678, 5.34011654922641314625779430203, 5.34875685075280458305508789334, 5.67807430364811971678562893232, 6.13750876012166040545444477804, 6.31192599994629443816179421541

Graph of the $Z$-function along the critical line