Properties

Label 4-3200e2-1.1-c1e2-0-44
Degree $4$
Conductor $10240000$
Sign $1$
Analytic cond. $652.911$
Root an. cond. $5.05491$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·9-s − 4·11-s − 4·19-s − 12·29-s − 12·41-s − 2·49-s − 28·59-s − 4·61-s − 24·71-s − 16·79-s − 5·81-s + 4·89-s − 8·99-s + 12·101-s − 12·109-s − 10·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s − 8·171-s + ⋯
L(s)  = 1  + 2/3·9-s − 1.20·11-s − 0.917·19-s − 2.22·29-s − 1.87·41-s − 2/7·49-s − 3.64·59-s − 0.512·61-s − 2.84·71-s − 1.80·79-s − 5/9·81-s + 0.423·89-s − 0.804·99-s + 1.19·101-s − 1.14·109-s − 0.909·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s − 0.611·171-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10240000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10240000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10240000\)    =    \(2^{14} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(652.911\)
Root analytic conductor: \(5.05491\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 10240000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
good3$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \)
7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 50 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 30 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 14 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 34 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 + 50 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 190 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.334441302051277550921406765719, −8.114914068764887856369628062794, −7.67455813663108951542839391754, −7.48291971878980060725313575119, −6.90543675263443085225841505650, −6.82976290048234225091642455929, −6.02551992111356855047994170118, −5.90041518263471523355653791751, −5.50003191517293580533629521356, −4.97321831644272694877932614841, −4.45771319679722568751419695004, −4.42839328559680894651992689943, −3.72681319535339418447199570017, −3.16317372166788583079257348997, −2.97935431906957312171637388271, −2.23103731694955860958888037925, −1.68107224980980954555286641825, −1.46038698318094762408882154618, 0, 0, 1.46038698318094762408882154618, 1.68107224980980954555286641825, 2.23103731694955860958888037925, 2.97935431906957312171637388271, 3.16317372166788583079257348997, 3.72681319535339418447199570017, 4.42839328559680894651992689943, 4.45771319679722568751419695004, 4.97321831644272694877932614841, 5.50003191517293580533629521356, 5.90041518263471523355653791751, 6.02551992111356855047994170118, 6.82976290048234225091642455929, 6.90543675263443085225841505650, 7.48291971878980060725313575119, 7.67455813663108951542839391754, 8.114914068764887856369628062794, 8.334441302051277550921406765719

Graph of the $Z$-function along the critical line