# Properties

 Degree 16 Conductor $2^{48} \cdot 5^{8}$ Sign $1$ Motivic weight 5 Primitive no Self-dual yes Analytic rank 0

# Learn more about

## Dirichlet series

 L(s)  = 1 − 8·5-s + 472·9-s − 736·11-s + 1.37e3·19-s − 1.03e3·25-s − 5.87e3·29-s − 4.22e3·31-s + 2.36e4·41-s − 3.77e3·45-s + 4.47e4·49-s + 5.88e3·55-s + 9.16e4·59-s − 1.23e5·61-s + 1.25e5·71-s − 4.32e4·79-s + 1.53e5·81-s − 4.19e4·89-s − 1.10e4·95-s − 3.47e5·99-s − 6.72e5·101-s + 5.39e5·109-s + 5.38e4·121-s + 1.30e5·125-s + 127-s + 131-s + 137-s + 139-s + ⋯
 L(s)  = 1 − 0.143·5-s + 1.94·9-s − 1.83·11-s + 0.874·19-s − 0.331·25-s − 1.29·29-s − 0.789·31-s + 2.19·41-s − 0.277·45-s + 2.66·49-s + 0.262·55-s + 3.42·59-s − 4.26·61-s + 2.95·71-s − 0.779·79-s + 2.59·81-s − 0.560·89-s − 0.125·95-s − 3.56·99-s − 6.55·101-s + 4.35·109-s + 0.334·121-s + 0.744·125-s + 5.50e−6·127-s + 5.09e−6·131-s + 4.55e−6·137-s + 4.38e−6·139-s + ⋯

## Functional equation

\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(6-s)\end{aligned}
\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{48} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+5/2)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}

## Invariants

 $$d$$ = $$16$$ $$N$$ = $$2^{48} \cdot 5^{8}$$ $$\varepsilon$$ = $1$ motivic weight = $$5$$ character : induced by $\chi_{320} (1, \cdot )$ primitive : no self-dual : yes analytic rank = $$0$$ Selberg data = $$(16,\ 2^{48} \cdot 5^{8} ,\ ( \ : [5/2]^{8} ),\ 1 )$$ $$L(3)$$ $$\approx$$ $$4.117162765$$ $$L(\frac12)$$ $$\approx$$ $$4.117162765$$ $$L(\frac{7}{2})$$ not available $$L(1)$$ not available

## Euler product

$L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1}$where, for $p \notin \{2,\;5\}$,$$F_p(T)$$ is a polynomial of degree 16. If $p \in \{2,\;5\}$, then $F_p(T)$ is a polynomial of degree at most 15.
$p$$F_p(T)$
bad2 $$1$$
5 $$1 + 8 T + 44 p^{2} T^{2} - 904 p^{3} T^{3} - 3506 p^{3} T^{4} - 904 p^{8} T^{5} + 44 p^{12} T^{6} + 8 p^{15} T^{7} + p^{20} T^{8}$$
good3 $$1 - 472 T^{2} + 69724 T^{4} - 2235496 p^{2} T^{6} + 104192518 p^{4} T^{8} - 2235496 p^{12} T^{10} + 69724 p^{20} T^{12} - 472 p^{30} T^{14} + p^{40} T^{16}$$
7 $$1 - 44728 T^{2} + 1493128636 T^{4} - 37445733732616 T^{6} + 682894235558230726 T^{8} - 37445733732616 p^{10} T^{10} + 1493128636 p^{20} T^{12} - 44728 p^{30} T^{14} + p^{40} T^{16}$$
11 $$( 1 + 368 T + 176204 T^{2} + 51158896 T^{3} + 42277949270 T^{4} + 51158896 p^{5} T^{5} + 176204 p^{10} T^{6} + 368 p^{15} T^{7} + p^{20} T^{8} )^{2}$$
13 $$1 - 1578472 T^{2} + 1074189263356 T^{4} - 437549632721743384 T^{6} +$$$$15\!\cdots\!86$$$$T^{8} - 437549632721743384 p^{10} T^{10} + 1074189263356 p^{20} T^{12} - 1578472 p^{30} T^{14} + p^{40} T^{16}$$
17 $$1 - 6260872 T^{2} + 17547242668444 T^{4} - 31297293718759478968 T^{6} +$$$$45\!\cdots\!30$$$$T^{8} - 31297293718759478968 p^{10} T^{10} + 17547242668444 p^{20} T^{12} - 6260872 p^{30} T^{14} + p^{40} T^{16}$$
19 $$( 1 - 688 T + 5308396 T^{2} - 6058136368 T^{3} + 15069081422710 T^{4} - 6058136368 p^{5} T^{5} + 5308396 p^{10} T^{6} - 688 p^{15} T^{7} + p^{20} T^{8} )^{2}$$
23 $$1 - 34675896 T^{2} + 569897415616828 T^{4} -$$$$59\!\cdots\!20$$$$T^{6} +$$$$44\!\cdots\!82$$$$T^{8} -$$$$59\!\cdots\!20$$$$p^{10} T^{10} + 569897415616828 p^{20} T^{12} - 34675896 p^{30} T^{14} + p^{40} T^{16}$$
29 $$( 1 + 2936 T + 58625996 T^{2} + 77951973928 T^{3} + 1466411094282230 T^{4} + 77951973928 p^{5} T^{5} + 58625996 p^{10} T^{6} + 2936 p^{15} T^{7} + p^{20} T^{8} )^{2}$$
31 $$( 1 + 2112 T + 80187004 T^{2} + 163080265536 T^{3} + 3196344720873606 T^{4} + 163080265536 p^{5} T^{5} + 80187004 p^{10} T^{6} + 2112 p^{15} T^{7} + p^{20} T^{8} )^{2}$$
37 $$1 - 251774632 T^{2} + 38631208311838780 T^{4} -$$$$41\!\cdots\!52$$$$T^{6} +$$$$32\!\cdots\!34$$$$T^{8} -$$$$41\!\cdots\!52$$$$p^{10} T^{10} + 38631208311838780 p^{20} T^{12} - 251774632 p^{30} T^{14} + p^{40} T^{16}$$
41 $$( 1 - 11800 T + 337909340 T^{2} - 2943020124776 T^{3} + 51155654972384870 T^{4} - 2943020124776 p^{5} T^{5} + 337909340 p^{10} T^{6} - 11800 p^{15} T^{7} + p^{20} T^{8} )^{2}$$
43 $$1 - 283211672 T^{2} + 48021567531024796 T^{4} -$$$$54\!\cdots\!84$$$$T^{6} +$$$$43\!\cdots\!06$$$$T^{8} -$$$$54\!\cdots\!84$$$$p^{10} T^{10} + 48021567531024796 p^{20} T^{12} - 283211672 p^{30} T^{14} + p^{40} T^{16}$$
47 $$1 - 963352312 T^{2} + 473832864723586300 T^{4} -$$$$15\!\cdots\!72$$$$T^{6} +$$$$40\!\cdots\!54$$$$T^{8} -$$$$15\!\cdots\!72$$$$p^{10} T^{10} + 473832864723586300 p^{20} T^{12} - 963352312 p^{30} T^{14} + p^{40} T^{16}$$
53 $$1 - 1183385640 T^{2} + 874785099161623996 T^{4} -$$$$49\!\cdots\!80$$$$T^{6} +$$$$23\!\cdots\!06$$$$T^{8} -$$$$49\!\cdots\!80$$$$p^{10} T^{10} + 874785099161623996 p^{20} T^{12} - 1183385640 p^{30} T^{14} + p^{40} T^{16}$$
59 $$( 1 - 45840 T + 3064286732 T^{2} - 94721285480976 T^{3} + 3348109683185502486 T^{4} - 94721285480976 p^{5} T^{5} + 3064286732 p^{10} T^{6} - 45840 p^{15} T^{7} + p^{20} T^{8} )^{2}$$
61 $$( 1 + 61928 T + 3903014764 T^{2} + 145287706763384 T^{3} + 5198153942066716726 T^{4} + 145287706763384 p^{5} T^{5} + 3903014764 p^{10} T^{6} + 61928 p^{15} T^{7} + p^{20} T^{8} )^{2}$$
67 $$1 - 9281919064 T^{2} + 39492482666681482588 T^{4} -$$$$10\!\cdots\!40$$$$T^{6} +$$$$16\!\cdots\!62$$$$T^{8} -$$$$10\!\cdots\!40$$$$p^{10} T^{10} + 39492482666681482588 p^{20} T^{12} - 9281919064 p^{30} T^{14} + p^{40} T^{16}$$
71 $$( 1 - 62816 T + 3398787356 T^{2} - 184024084124896 T^{3} + 8353296562609817510 T^{4} - 184024084124896 p^{5} T^{5} + 3398787356 p^{10} T^{6} - 62816 p^{15} T^{7} + p^{20} T^{8} )^{2}$$
73 $$1 - 9140679496 T^{2} + 46078306824990298588 T^{4} -$$$$15\!\cdots\!60$$$$T^{6} +$$$$37\!\cdots\!02$$$$T^{8} -$$$$15\!\cdots\!60$$$$p^{10} T^{10} + 46078306824990298588 p^{20} T^{12} - 9140679496 p^{30} T^{14} + p^{40} T^{16}$$
79 $$( 1 + 21632 T + 7152876604 T^{2} + 332616618908288 T^{3} + 24121899620797566790 T^{4} + 332616618908288 p^{5} T^{5} + 7152876604 p^{10} T^{6} + 21632 p^{15} T^{7} + p^{20} T^{8} )^{2}$$
83 $$1 - 81444552 p T^{2} + 40943120759345365468 T^{4} -$$$$86\!\cdots\!80$$$$T^{6} +$$$$39\!\cdots\!42$$$$T^{8} -$$$$86\!\cdots\!80$$$$p^{10} T^{10} + 40943120759345365468 p^{20} T^{12} - 81444552 p^{31} T^{14} + p^{40} T^{16}$$
89 $$( 1 + 20952 T + 16118164796 T^{2} + 497915996461992 T^{3} +$$$$11\!\cdots\!30$$$$T^{4} + 497915996461992 p^{5} T^{5} + 16118164796 p^{10} T^{6} + 20952 p^{15} T^{7} + p^{20} T^{8} )^{2}$$
97 $$1 - 45263915272 T^{2} +$$$$10\!\cdots\!40$$$$T^{4} -$$$$14\!\cdots\!12$$$$T^{6} +$$$$15\!\cdots\!94$$$$T^{8} -$$$$14\!\cdots\!12$$$$p^{10} T^{10} +$$$$10\!\cdots\!40$$$$p^{20} T^{12} - 45263915272 p^{30} T^{14} + p^{40} T^{16}$$
show more
show less
\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}

## Imaginary part of the first few zeros on the critical line

−4.36590640246297794449076848368, −4.26864425932921979508012515636, −3.91569259936469693538117750794, −3.73523338293967947581854227992, −3.60641523496034296960157088691, −3.58013914667909384033123606220, −3.58009702018744692993280109330, −3.04641866355727704039653927270, −2.99006423371546851500093409344, −2.88556525985170918819418590568, −2.63158289437345133413806386232, −2.53068781389446046473730807228, −2.39931365015476864714155616922, −2.07884099517618706255970374519, −2.02336723147824760647880790916, −1.89598081998202538454240165060, −1.62564952253153195137308559297, −1.46593884147138193218684711683, −1.29449181091983282571858998923, −1.06641592633823178225468432004, −0.810429624391299696056941661171, −0.70937336679334322433829747808, −0.47902289191581290682935811742, −0.43930909774794211219689381578, −0.10764378688552703728341938468, 0.10764378688552703728341938468, 0.43930909774794211219689381578, 0.47902289191581290682935811742, 0.70937336679334322433829747808, 0.810429624391299696056941661171, 1.06641592633823178225468432004, 1.29449181091983282571858998923, 1.46593884147138193218684711683, 1.62564952253153195137308559297, 1.89598081998202538454240165060, 2.02336723147824760647880790916, 2.07884099517618706255970374519, 2.39931365015476864714155616922, 2.53068781389446046473730807228, 2.63158289437345133413806386232, 2.88556525985170918819418590568, 2.99006423371546851500093409344, 3.04641866355727704039653927270, 3.58009702018744692993280109330, 3.58013914667909384033123606220, 3.60641523496034296960157088691, 3.73523338293967947581854227992, 3.91569259936469693538117750794, 4.26864425932921979508012515636, 4.36590640246297794449076848368

## Graph of the $Z$-function along the critical line

Plot not available for L-functions of degree greater than 10.