Properties

Degree 2
Conductor $ 2^{6} \cdot 5 $
Sign $1$
Motivic weight 5
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 16.7·3-s − 25·5-s − 94.1·7-s + 36.4·9-s + 143.·11-s − 421.·13-s − 417.·15-s + 1.98e3·17-s − 1.31e3·19-s − 1.57e3·21-s + 4.02e3·23-s + 625·25-s − 3.45e3·27-s + 6.41e3·29-s + 2.35e3·31-s + 2.40e3·33-s + 2.35e3·35-s + 7.87e3·37-s − 7.04e3·39-s + 1.50e4·41-s + 1.14e3·43-s − 910.·45-s + 2.15e4·47-s − 7.94e3·49-s + 3.31e4·51-s − 9.56e3·53-s − 3.59e3·55-s + ⋯
L(s)  = 1  + 1.07·3-s − 0.447·5-s − 0.726·7-s + 0.149·9-s + 0.358·11-s − 0.691·13-s − 0.479·15-s + 1.66·17-s − 0.837·19-s − 0.778·21-s + 1.58·23-s + 0.200·25-s − 0.911·27-s + 1.41·29-s + 0.439·31-s + 0.383·33-s + 0.324·35-s + 0.945·37-s − 0.741·39-s + 1.40·41-s + 0.0941·43-s − 0.0670·45-s + 1.42·47-s − 0.472·49-s + 1.78·51-s − 0.467·53-s − 0.160·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 320 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(320\)    =    \(2^{6} \cdot 5\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(5\)
character  :  $\chi_{320} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 320,\ (\ :5/2),\ 1)\)
\(L(3)\)  \(\approx\)  \(2.557221525\)
\(L(\frac12)\)  \(\approx\)  \(2.557221525\)
\(L(\frac{7}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;5\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;5\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 25T \)
good3 \( 1 - 16.7T + 243T^{2} \)
7 \( 1 + 94.1T + 1.68e4T^{2} \)
11 \( 1 - 143.T + 1.61e5T^{2} \)
13 \( 1 + 421.T + 3.71e5T^{2} \)
17 \( 1 - 1.98e3T + 1.41e6T^{2} \)
19 \( 1 + 1.31e3T + 2.47e6T^{2} \)
23 \( 1 - 4.02e3T + 6.43e6T^{2} \)
29 \( 1 - 6.41e3T + 2.05e7T^{2} \)
31 \( 1 - 2.35e3T + 2.86e7T^{2} \)
37 \( 1 - 7.87e3T + 6.93e7T^{2} \)
41 \( 1 - 1.50e4T + 1.15e8T^{2} \)
43 \( 1 - 1.14e3T + 1.47e8T^{2} \)
47 \( 1 - 2.15e4T + 2.29e8T^{2} \)
53 \( 1 + 9.56e3T + 4.18e8T^{2} \)
59 \( 1 - 4.27e4T + 7.14e8T^{2} \)
61 \( 1 + 3.21e4T + 8.44e8T^{2} \)
67 \( 1 + 3.03e4T + 1.35e9T^{2} \)
71 \( 1 + 3.60e4T + 1.80e9T^{2} \)
73 \( 1 + 6.34e4T + 2.07e9T^{2} \)
79 \( 1 - 8.99e4T + 3.07e9T^{2} \)
83 \( 1 - 3.82e4T + 3.93e9T^{2} \)
89 \( 1 - 5.74e3T + 5.58e9T^{2} \)
97 \( 1 - 1.78e5T + 8.58e9T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−10.64634542512329349357174483015, −9.663812063200602081736876661948, −8.937013352479902503320234752145, −7.993014229724910133943923919022, −7.17810282774499158698847751502, −5.97664564326278683984393579847, −4.52682618883783459375324684044, −3.31713769161965297730074800483, −2.62819099335090632697236471852, −0.849361448395765761918563262542, 0.849361448395765761918563262542, 2.62819099335090632697236471852, 3.31713769161965297730074800483, 4.52682618883783459375324684044, 5.97664564326278683984393579847, 7.17810282774499158698847751502, 7.993014229724910133943923919022, 8.937013352479902503320234752145, 9.663812063200602081736876661948, 10.64634542512329349357174483015

Graph of the $Z$-function along the critical line