Properties

Label 4-320e2-1.1-c2e2-0-7
Degree $4$
Conductor $102400$
Sign $1$
Analytic cond. $76.0273$
Root an. cond. $2.95285$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s + 4·7-s + 8·9-s + 16·11-s − 6·13-s + 14·17-s + 16·21-s − 4·23-s − 25·25-s + 36·27-s + 104·31-s + 64·33-s + 6·37-s − 24·39-s − 16·41-s + 84·43-s − 36·47-s + 8·49-s + 56·51-s − 106·53-s + 96·61-s + 32·63-s − 124·67-s − 16·69-s − 56·71-s − 94·73-s − 100·75-s + ⋯
L(s)  = 1  + 4/3·3-s + 4/7·7-s + 8/9·9-s + 1.45·11-s − 0.461·13-s + 0.823·17-s + 0.761·21-s − 0.173·23-s − 25-s + 4/3·27-s + 3.35·31-s + 1.93·33-s + 6/37·37-s − 0.615·39-s − 0.390·41-s + 1.95·43-s − 0.765·47-s + 8/49·49-s + 1.09·51-s − 2·53-s + 1.57·61-s + 0.507·63-s − 1.85·67-s − 0.231·69-s − 0.788·71-s − 1.28·73-s − 4/3·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s+1)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(102400\)    =    \(2^{12} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(76.0273\)
Root analytic conductor: \(2.95285\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 102400,\ (\ :1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(4.521283195\)
\(L(\frac12)\) \(\approx\) \(4.521283195\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 + p^{2} T^{2} \)
good3$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} \)
7$C_2^2$ \( 1 - 4 T + 8 T^{2} - 4 p^{2} T^{3} + p^{4} T^{4} \)
11$C_2$ \( ( 1 - 8 T + p^{2} T^{2} )^{2} \)
13$C_2^2$ \( 1 + 6 T + 18 T^{2} + 6 p^{2} T^{3} + p^{4} T^{4} \)
17$C_2$ \( ( 1 - 30 T + p^{2} T^{2} )( 1 + 16 T + p^{2} T^{2} ) \)
19$C_2^2$ \( 1 - 322 T^{2} + p^{4} T^{4} \)
23$C_2^2$ \( 1 + 4 T + 8 T^{2} + 4 p^{2} T^{3} + p^{4} T^{4} \)
29$C_2$ \( ( 1 - 42 T + p^{2} T^{2} )( 1 + 42 T + p^{2} T^{2} ) \)
31$C_2$ \( ( 1 - 52 T + p^{2} T^{2} )^{2} \)
37$C_2^2$ \( 1 - 6 T + 18 T^{2} - 6 p^{2} T^{3} + p^{4} T^{4} \)
41$C_2$ \( ( 1 + 8 T + p^{2} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 84 T + 3528 T^{2} - 84 p^{2} T^{3} + p^{4} T^{4} \)
47$C_2^2$ \( 1 + 36 T + 648 T^{2} + 36 p^{2} T^{3} + p^{4} T^{4} \)
53$C_1$$\times$$C_2$ \( ( 1 + p T )^{2}( 1 + p^{2} T^{2} ) \)
59$C_2^2$ \( 1 - 6562 T^{2} + p^{4} T^{4} \)
61$C_2$ \( ( 1 - 48 T + p^{2} T^{2} )^{2} \)
67$C_2^2$ \( 1 + 124 T + 7688 T^{2} + 124 p^{2} T^{3} + p^{4} T^{4} \)
71$C_2$ \( ( 1 + 28 T + p^{2} T^{2} )^{2} \)
73$C_2^2$ \( 1 + 94 T + 4418 T^{2} + 94 p^{2} T^{3} + p^{4} T^{4} \)
79$C_1$$\times$$C_1$ \( ( 1 - p T )^{2}( 1 + p T )^{2} \)
83$C_2^2$ \( 1 + 36 T + 648 T^{2} + 36 p^{2} T^{3} + p^{4} T^{4} \)
89$C_2^2$ \( 1 - 9442 T^{2} + p^{4} T^{4} \)
97$C_2^2$ \( 1 + 126 T + 7938 T^{2} + 126 p^{2} T^{3} + p^{4} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.64607882151072088403009525243, −11.39327676336287180249698022478, −10.51892705650010151059998770332, −10.14479492757461918283613385651, −9.680039127101922974825941665738, −9.328045504588263865534143261686, −8.739644392277153183017969501821, −8.398460943915667755131748714658, −7.75152450861019584063470430515, −7.74916034382571295725625967703, −6.76985651513538834443181265468, −6.44606412800501350919894234585, −5.81786934139138164078574115614, −4.98333481203219928433741495413, −4.24787538765960950245126687354, −4.12905377665079554164938187557, −2.97789672215722418063483479817, −2.83173947653165560421207226790, −1.73673106186176142693196532384, −1.05555449912427093422493478929, 1.05555449912427093422493478929, 1.73673106186176142693196532384, 2.83173947653165560421207226790, 2.97789672215722418063483479817, 4.12905377665079554164938187557, 4.24787538765960950245126687354, 4.98333481203219928433741495413, 5.81786934139138164078574115614, 6.44606412800501350919894234585, 6.76985651513538834443181265468, 7.74916034382571295725625967703, 7.75152450861019584063470430515, 8.398460943915667755131748714658, 8.739644392277153183017969501821, 9.328045504588263865534143261686, 9.680039127101922974825941665738, 10.14479492757461918283613385651, 10.51892705650010151059998770332, 11.39327676336287180249698022478, 11.64607882151072088403009525243

Graph of the $Z$-function along the critical line