Properties

Label 4-320e2-1.1-c9e2-0-8
Degree $4$
Conductor $102400$
Sign $1$
Analytic cond. $27162.8$
Root an. cond. $12.8378$
Motivic weight $9$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 260·3-s + 1.25e3·5-s + 380·7-s + 3.15e4·9-s + 1.02e5·11-s − 1.79e5·13-s − 3.25e5·15-s + 3.16e5·17-s + 1.37e5·19-s − 9.88e4·21-s + 6.65e5·23-s + 1.17e6·25-s − 3.95e6·27-s + 6.89e6·29-s − 2.91e5·31-s − 2.67e7·33-s + 4.75e5·35-s − 1.12e7·37-s + 4.65e7·39-s + 2.97e7·41-s − 1.17e7·43-s + 3.94e7·45-s − 6.24e7·47-s + 1.56e7·49-s − 8.21e7·51-s − 9.41e6·53-s + 1.28e8·55-s + ⋯
L(s)  = 1  − 1.85·3-s + 0.894·5-s + 0.0598·7-s + 1.60·9-s + 2.11·11-s − 1.73·13-s − 1.65·15-s + 0.917·17-s + 0.241·19-s − 0.110·21-s + 0.495·23-s + 3/5·25-s − 1.43·27-s + 1.80·29-s − 0.0567·31-s − 3.92·33-s + 0.0535·35-s − 0.987·37-s + 3.22·39-s + 1.64·41-s − 0.522·43-s + 1.43·45-s − 1.86·47-s + 0.388·49-s − 1.70·51-s − 0.163·53-s + 1.89·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 102400 ^{s/2} \, \Gamma_{\C}(s+9/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(102400\)    =    \(2^{12} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(27162.8\)
Root analytic conductor: \(12.8378\)
Motivic weight: \(9\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 102400,\ (\ :9/2, 9/2),\ 1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_1$ \( ( 1 - p^{4} T )^{2} \)
good3$D_{4}$ \( 1 + 260 T + 12014 p T^{2} + 260 p^{9} T^{3} + p^{18} T^{4} \)
7$D_{4}$ \( 1 - 380 T - 2220450 p T^{2} - 380 p^{9} T^{3} + p^{18} T^{4} \)
11$D_{4}$ \( 1 - 102720 T + 7335543382 T^{2} - 102720 p^{9} T^{3} + p^{18} T^{4} \)
13$D_{4}$ \( 1 + 1060 p^{2} T + 22798610142 T^{2} + 1060 p^{11} T^{3} + p^{18} T^{4} \)
17$D_{4}$ \( 1 - 316020 T + 259693705798 T^{2} - 316020 p^{9} T^{3} + p^{18} T^{4} \)
19$D_{4}$ \( 1 - 137272 T + 111610161654 T^{2} - 137272 p^{9} T^{3} + p^{18} T^{4} \)
23$D_{4}$ \( 1 - 665460 T + 2886450615250 T^{2} - 665460 p^{9} T^{3} + p^{18} T^{4} \)
29$D_{4}$ \( 1 - 6893748 T + 40195999658014 T^{2} - 6893748 p^{9} T^{3} + p^{18} T^{4} \)
31$D_{4}$ \( 1 + 291832 T + 38964935800398 T^{2} + 291832 p^{9} T^{3} + p^{18} T^{4} \)
37$D_{4}$ \( 1 + 11261380 T + 218879982937230 T^{2} + 11261380 p^{9} T^{3} + p^{18} T^{4} \)
41$D_{4}$ \( 1 - 29773452 T + 771012402449398 T^{2} - 29773452 p^{9} T^{3} + p^{18} T^{4} \)
43$D_{4}$ \( 1 + 11708180 T + 838769843899386 T^{2} + 11708180 p^{9} T^{3} + p^{18} T^{4} \)
47$D_{4}$ \( 1 + 62493300 T + 3177958884734338 T^{2} + 62493300 p^{9} T^{3} + p^{18} T^{4} \)
53$D_{4}$ \( 1 + 9417780 T + 5708185761526990 T^{2} + 9417780 p^{9} T^{3} + p^{18} T^{4} \)
59$D_{4}$ \( 1 + 92930856 T + 16656477955483462 T^{2} + 92930856 p^{9} T^{3} + p^{18} T^{4} \)
61$D_{4}$ \( 1 + 195673924 T + 22434263296171326 T^{2} + 195673924 p^{9} T^{3} + p^{18} T^{4} \)
67$D_{4}$ \( 1 + 219767420 T + 65652945987990090 T^{2} + 219767420 p^{9} T^{3} + p^{18} T^{4} \)
71$D_{4}$ \( 1 + 311207016 T + 76405636625293726 T^{2} + 311207016 p^{9} T^{3} + p^{18} T^{4} \)
73$D_{4}$ \( 1 + 99224060 T + 35402447061205782 T^{2} + 99224060 p^{9} T^{3} + p^{18} T^{4} \)
79$D_{4}$ \( 1 + 542261776 T + 313115996157615582 T^{2} + 542261776 p^{9} T^{3} + p^{18} T^{4} \)
83$D_{4}$ \( 1 + 1256915700 T + 768086791626261130 T^{2} + 1256915700 p^{9} T^{3} + p^{18} T^{4} \)
89$D_{4}$ \( 1 + 462291852 T + 159603168035249494 T^{2} + 462291852 p^{9} T^{3} + p^{18} T^{4} \)
97$D_{4}$ \( 1 - 1671716740 T + 2048690578856969670 T^{2} - 1671716740 p^{9} T^{3} + p^{18} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.993540819607622718311366056133, −9.552979613820562442175397474968, −9.018612395184615099538344056235, −8.693648031329484491015540985340, −7.58240541765932179351686080621, −7.43185738664460812496900387073, −6.64505348983119278677556358854, −6.49579054469041541397555981495, −5.85599975566279246171045003436, −5.69003891327924731290314128115, −4.83555437332175810550489407653, −4.75101281878554400589930050219, −4.13490083030205615689037655359, −3.18792158240915226628115977839, −2.77708674146124411788238691104, −1.80110252606544914057993408049, −1.24659923658035162907623746852, −1.12118831242302935074686024217, 0, 0, 1.12118831242302935074686024217, 1.24659923658035162907623746852, 1.80110252606544914057993408049, 2.77708674146124411788238691104, 3.18792158240915226628115977839, 4.13490083030205615689037655359, 4.75101281878554400589930050219, 4.83555437332175810550489407653, 5.69003891327924731290314128115, 5.85599975566279246171045003436, 6.49579054469041541397555981495, 6.64505348983119278677556358854, 7.43185738664460812496900387073, 7.58240541765932179351686080621, 8.693648031329484491015540985340, 9.018612395184615099538344056235, 9.552979613820562442175397474968, 9.993540819607622718311366056133

Graph of the $Z$-function along the critical line