Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $-0.161 + 0.986i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 − 0.707i)2-s − 1.00i·4-s + (0.707 + 0.707i)7-s + (−0.707 − 0.707i)8-s − 0.585i·11-s + (3.43 − 3.43i)13-s + 1.00·14-s − 1.00·16-s + (−0.906 + 0.906i)17-s − 2.04i·19-s + (−0.414 − 0.414i)22-s + (0.257 + 0.257i)23-s − 4.86i·26-s + (0.707 − 0.707i)28-s + 1.75·29-s + ⋯
L(s)  = 1  + (0.499 − 0.499i)2-s − 0.500i·4-s + (0.267 + 0.267i)7-s + (−0.250 − 0.250i)8-s − 0.176i·11-s + (0.953 − 0.953i)13-s + 0.267·14-s − 0.250·16-s + (−0.219 + 0.219i)17-s − 0.470i·19-s + (−0.0883 − 0.0883i)22-s + (0.0537 + 0.0537i)23-s − 0.953i·26-s + (0.133 − 0.133i)28-s + 0.325·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.161 + 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.161 + 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.161 + 0.986i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (1457, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ -0.161 + 0.986i)$
$L(1)$  $\approx$  $2.420489388$
$L(\frac12)$  $\approx$  $2.420489388$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-0.707 + 0.707i)T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (-0.707 - 0.707i)T \)
good11 \( 1 + 0.585iT - 11T^{2} \)
13 \( 1 + (-3.43 + 3.43i)T - 13iT^{2} \)
17 \( 1 + (0.906 - 0.906i)T - 17iT^{2} \)
19 \( 1 + 2.04iT - 19T^{2} \)
23 \( 1 + (-0.257 - 0.257i)T + 23iT^{2} \)
29 \( 1 - 1.75T + 29T^{2} \)
31 \( 1 - 1.47T + 31T^{2} \)
37 \( 1 + (4.04 + 4.04i)T + 37iT^{2} \)
41 \( 1 + 3.84iT - 41T^{2} \)
43 \( 1 + (-5.10 + 5.10i)T - 43iT^{2} \)
47 \( 1 + (5.49 - 5.49i)T - 47iT^{2} \)
53 \( 1 + (-5.02 - 5.02i)T + 53iT^{2} \)
59 \( 1 - 11.1T + 59T^{2} \)
61 \( 1 - 3.78T + 61T^{2} \)
67 \( 1 + (6.74 + 6.74i)T + 67iT^{2} \)
71 \( 1 + 10.9iT - 71T^{2} \)
73 \( 1 + (-5.97 + 5.97i)T - 73iT^{2} \)
79 \( 1 + 0.944iT - 79T^{2} \)
83 \( 1 + (7.82 + 7.82i)T + 83iT^{2} \)
89 \( 1 - 0.0705T + 89T^{2} \)
97 \( 1 + (0.746 + 0.746i)T + 97iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.601574829737921551433887601150, −7.79405665097103654765337924836, −6.86009629231643252765912920839, −5.97234057848533496929677316771, −5.43854088234923764783426480171, −4.53651022248332944240976170123, −3.66106442917293034802342600058, −2.88431323407144779324008155088, −1.86765048066114449724682218052, −0.67923771605397600615623007670, 1.26838356161347223521965883619, 2.43807747633239908952576530615, 3.60597550659190002589047977099, 4.23832554859170918579580674809, 5.04108036976049561386903246958, 5.89237163461373762614315677441, 6.70468539584213248320630168336, 7.14674657267436146765934897770, 8.277105233993912606965606223190, 8.542051834473055149171953538816

Graph of the $Z$-function along the critical line