Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $0.391 - 0.920i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 − 0.707i)2-s + 1.00i·4-s + (0.707 − 0.707i)7-s + (0.707 − 0.707i)8-s + 5.26i·11-s + (3.16 + 3.16i)13-s − 1.00·14-s − 1.00·16-s + (3.05 + 3.05i)17-s + (3.72 − 3.72i)22-s + (4.32 − 4.32i)23-s − 4.46i·26-s + (0.707 + 0.707i)28-s − 9.96·29-s + 1.26·31-s + (0.707 + 0.707i)32-s + ⋯
L(s)  = 1  + (−0.499 − 0.499i)2-s + 0.500i·4-s + (0.267 − 0.267i)7-s + (0.250 − 0.250i)8-s + 1.58i·11-s + (0.876 + 0.876i)13-s − 0.267·14-s − 0.250·16-s + (0.741 + 0.741i)17-s + (0.793 − 0.793i)22-s + (0.901 − 0.901i)23-s − 0.876i·26-s + (0.133 + 0.133i)28-s − 1.84·29-s + 0.227·31-s + (0.125 + 0.125i)32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.391 - 0.920i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.391 - 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $0.391 - 0.920i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (2843, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ 0.391 - 0.920i)$
$L(1)$  $\approx$  $1.260842538$
$L(\frac12)$  $\approx$  $1.260842538$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (0.707 + 0.707i)T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (-0.707 + 0.707i)T \)
good11 \( 1 - 5.26iT - 11T^{2} \)
13 \( 1 + (-3.16 - 3.16i)T + 13iT^{2} \)
17 \( 1 + (-3.05 - 3.05i)T + 17iT^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + (-4.32 + 4.32i)T - 23iT^{2} \)
29 \( 1 + 9.96T + 29T^{2} \)
31 \( 1 - 1.26T + 31T^{2} \)
37 \( 1 + (-2.93 + 2.93i)T - 37iT^{2} \)
41 \( 1 - 10.6iT - 41T^{2} \)
43 \( 1 + (0.597 + 0.597i)T + 43iT^{2} \)
47 \( 1 + (3.42 + 3.42i)T + 47iT^{2} \)
53 \( 1 + (9.88 - 9.88i)T - 53iT^{2} \)
59 \( 1 + 3.12T + 59T^{2} \)
61 \( 1 - 3.05T + 61T^{2} \)
67 \( 1 + (4.59 - 4.59i)T - 67iT^{2} \)
71 \( 1 - 9.23iT - 71T^{2} \)
73 \( 1 + (10.2 + 10.2i)T + 73iT^{2} \)
79 \( 1 + 3.57iT - 79T^{2} \)
83 \( 1 + (6.21 - 6.21i)T - 83iT^{2} \)
89 \( 1 - 3.61T + 89T^{2} \)
97 \( 1 + (-4.63 + 4.63i)T - 97iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.980089353003098925096848127063, −8.089145664717877904730457040445, −7.44853236416417467655846382784, −6.75793109331149619821611741643, −5.87791088403959053391260149528, −4.66674527167308319110596872169, −4.17098866014400906563720710597, −3.16706535966035647575700633929, −1.97322765638374896370438579363, −1.31341415813654528388191711476, 0.49979045000293173616935033280, 1.53241031809631857285470866917, 3.03654162561147083392895078203, 3.60083582505337136073993184971, 5.03796669401659709873727853716, 5.65958324252434898214723199098, 6.12720486638442548418589441470, 7.23663897861376192332364795613, 7.85987033865159843997928622423, 8.507032580812715091976685396234

Graph of the $Z$-function along the critical line