Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $0.391 - 0.920i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.707 + 0.707i)2-s + 1.00i·4-s + (−0.707 + 0.707i)7-s + (−0.707 + 0.707i)8-s − 3.41i·11-s + (−4 − 4i)13-s − 1.00·14-s − 1.00·16-s + (3.41 + 3.41i)17-s + 2.82i·19-s + (2.41 − 2.41i)22-s + (−0.828 + 0.828i)23-s − 5.65i·26-s + (−0.707 − 0.707i)28-s + 4.82·29-s + ⋯
L(s)  = 1  + (0.499 + 0.499i)2-s + 0.500i·4-s + (−0.267 + 0.267i)7-s + (−0.250 + 0.250i)8-s − 1.02i·11-s + (−1.10 − 1.10i)13-s − 0.267·14-s − 0.250·16-s + (0.828 + 0.828i)17-s + 0.648i·19-s + (0.514 − 0.514i)22-s + (−0.172 + 0.172i)23-s − 1.10i·26-s + (−0.133 − 0.133i)28-s + 0.896·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.391 - 0.920i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.391 - 0.920i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $0.391 - 0.920i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (2843, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ 0.391 - 0.920i)$
$L(1)$  $\approx$  $2.191756996$
$L(\frac12)$  $\approx$  $2.191756996$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-0.707 - 0.707i)T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (0.707 - 0.707i)T \)
good11 \( 1 + 3.41iT - 11T^{2} \)
13 \( 1 + (4 + 4i)T + 13iT^{2} \)
17 \( 1 + (-3.41 - 3.41i)T + 17iT^{2} \)
19 \( 1 - 2.82iT - 19T^{2} \)
23 \( 1 + (0.828 - 0.828i)T - 23iT^{2} \)
29 \( 1 - 4.82T + 29T^{2} \)
31 \( 1 - 10.2T + 31T^{2} \)
37 \( 1 + (-2.24 + 2.24i)T - 37iT^{2} \)
41 \( 1 - 8.82iT - 41T^{2} \)
43 \( 1 + (-8.07 - 8.07i)T + 43iT^{2} \)
47 \( 1 + (-0.757 - 0.757i)T + 47iT^{2} \)
53 \( 1 + (5.41 - 5.41i)T - 53iT^{2} \)
59 \( 1 - 2.82T + 59T^{2} \)
61 \( 1 - 9.89T + 61T^{2} \)
67 \( 1 + (5.58 - 5.58i)T - 67iT^{2} \)
71 \( 1 + 6.82iT - 71T^{2} \)
73 \( 1 + (-7.07 - 7.07i)T + 73iT^{2} \)
79 \( 1 - 5.65iT - 79T^{2} \)
83 \( 1 + (-4.82 + 4.82i)T - 83iT^{2} \)
89 \( 1 + 8.82T + 89T^{2} \)
97 \( 1 + (-7.41 + 7.41i)T - 97iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.421401744701951596377059128493, −8.107618497394323786690192501480, −7.40701075465569345137619375346, −6.21845187694929376322180975507, −5.96556388729189918560825686561, −5.09235137449360328006964745444, −4.23038619623491200332514704539, −3.17303382254405491354622127774, −2.67356263157165126108825506957, −0.963382300773776048038622673884, 0.71873921477873437996708461310, 2.12895179207047191317585245611, 2.74330350723390561401731630015, 3.91179107788775218385828811412, 4.68064805368551518299335524531, 5.14464916689989158402647429335, 6.36443404995698919683120781707, 6.99736594989227501228524020859, 7.57017194988745981861529337323, 8.703823732564818599949843278514

Graph of the $Z$-function along the critical line