Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $0.447 + 0.894i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + i·7-s + i·8-s + 4·11-s − 2i·13-s + 14-s + 16-s − 6i·17-s − 4i·22-s + 8i·23-s − 2·26-s i·28-s + 10·29-s − 8·31-s i·32-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 0.377i·7-s + 0.353i·8-s + 1.20·11-s − 0.554i·13-s + 0.267·14-s + 0.250·16-s − 1.45i·17-s − 0.852i·22-s + 1.66i·23-s − 0.392·26-s − 0.188i·28-s + 1.85·29-s − 1.43·31-s − 0.176i·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $0.447 + 0.894i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (2899, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ 0.447 + 0.894i)$
$L(1)$  $\approx$  $1.851080526$
$L(\frac12)$  $\approx$  $1.851080526$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - iT \)
good11 \( 1 - 4T + 11T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
17 \( 1 + 6iT - 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 - 8iT - 23T^{2} \)
29 \( 1 - 10T + 29T^{2} \)
31 \( 1 + 8T + 31T^{2} \)
37 \( 1 + 2iT - 37T^{2} \)
41 \( 1 - 2T + 41T^{2} \)
43 \( 1 - 8iT - 43T^{2} \)
47 \( 1 - 4iT - 47T^{2} \)
53 \( 1 + 10iT - 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 - 4iT - 83T^{2} \)
89 \( 1 - 14T + 89T^{2} \)
97 \( 1 + 2iT - 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.762485760516814276506416481264, −7.88531183134421312445158632349, −7.10919006723036228969870917074, −6.22404062695061627230518680314, −5.34101421649244286684639540018, −4.65236891331094227497641237193, −3.60074446134783753497241225253, −2.96796623091637426906950349012, −1.84880430456966005618753217806, −0.78461377901731977779196383475, 0.927936750808387808129664658783, 2.12109098891343464276410383978, 3.58378121644805737314205261849, 4.18004133837923729013381197563, 4.92487744699090108147806507829, 6.10994024603543478578020940917, 6.50124166124116258540171234323, 7.16640032452598025229564295112, 8.128339392213194433757424584729, 8.749491786643779186228267231118

Graph of the $Z$-function along the critical line