Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $0.447 - 0.894i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + i·2-s − 4-s + i·7-s i·8-s − 2i·13-s − 14-s + 16-s − 2·19-s + 2·26-s i·28-s + 6·29-s + 8·31-s + i·32-s − 4i·37-s − 2i·38-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.5·4-s + 0.377i·7-s − 0.353i·8-s − 0.554i·13-s − 0.267·14-s + 0.250·16-s − 0.458·19-s + 0.392·26-s − 0.188i·28-s + 1.11·29-s + 1.43·31-s + 0.176i·32-s − 0.657i·37-s − 0.324i·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $0.447 - 0.894i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (2899, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ 0.447 - 0.894i)$
$L(1)$  $\approx$  $1.648116311$
$L(\frac12)$  $\approx$  $1.648116311$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 - iT \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - iT \)
good11 \( 1 + 11T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 + 4iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 2iT - 43T^{2} \)
47 \( 1 - 6iT - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 12T + 59T^{2} \)
61 \( 1 - 8T + 61T^{2} \)
67 \( 1 - 2iT - 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 2iT - 73T^{2} \)
79 \( 1 - 16T + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 10iT - 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.538725681242857869666908292632, −8.200121323913554069772071555711, −7.28002282381830107871109533855, −6.52300765544816658970992038916, −5.88210687213051791097291490817, −5.06083094473874519121372982960, −4.33758145465434388558654496862, −3.29071773038933164007453995990, −2.31612230040998051861296662072, −0.830246319784123610551317756921, 0.73863750808720447045536713662, 1.89248978017999300971331797570, 2.84891059370008941722530675145, 3.79068177135856846222756450670, 4.54944079256386358730642439459, 5.26336648189400356114605460107, 6.44244083100468576861231443861, 6.90582404766489243037836502391, 8.122393540218572032822276816006, 8.482748299997655803667908699491

Graph of the $Z$-function along the critical line