Properties

Degree 4
Conductor $ 2^{2} \cdot 3^{4} \cdot 5^{4} \cdot 7^{2} $
Sign $1$
Motivic weight 1
Primitive no
Self-dual yes
Analytic rank 2

Origins

Origins of factors

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 4-s + 16-s − 16·19-s + 12·29-s − 8·31-s + 12·41-s − 49-s − 24·59-s − 20·61-s − 64-s − 24·71-s + 16·76-s − 16·79-s − 12·89-s − 12·101-s − 28·109-s − 12·116-s − 22·121-s + 8·124-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + ⋯
L(s)  = 1  − 1/2·4-s + 1/4·16-s − 3.67·19-s + 2.22·29-s − 1.43·31-s + 1.87·41-s − 1/7·49-s − 3.12·59-s − 2.56·61-s − 1/8·64-s − 2.84·71-s + 1.83·76-s − 1.80·79-s − 1.27·89-s − 1.19·101-s − 2.68·109-s − 1.11·116-s − 2·121-s + 0.718·124-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9922500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9922500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(4\)
\( N \)  =  \(9922500\)    =    \(2^{2} \cdot 3^{4} \cdot 5^{4} \cdot 7^{2}\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  induced by $\chi_{3150} (1, \cdot )$
primitive  :  no
self-dual  :  yes
analytic rank  =  2
Selberg data  =  $(4,\ 9922500,\ (\ :1/2, 1/2),\ 1)$
$L(1)$  $=$  $0$
$L(\frac12)$  $=$  $0$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\[F_p(T) = 1 - a_p T + b_p T^2 - a_p p T^3 + p^2 T^4 \]with $b_p = a_p^2 - a_{p^2}$. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 3.
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + T^{2} \)
3 \( 1 \)
5 \( 1 \)
7$C_2$ \( 1 + T^{2} \)
good11$C_2$ \( ( 1 + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - p T^{2} )^{2} \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
37$C_2^2$ \( 1 + 26 T^{2} + p^{2} T^{4} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
47$C_2$ \( ( 1 - p T^{2} )^{2} \)
53$C_2^2$ \( 1 - 70 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 118 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 46 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 - 94 T^{2} + p^{2} T^{4} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.394663982777576601807785052690, −8.339330707143783256402445841106, −7.79856665122842137546509773647, −7.46099889733317650240924556944, −6.85961694364785670576843052593, −6.68710253522566000263131383101, −6.08766621867549647746327852455, −5.90735893405611094874501195460, −5.67703750528507140179191063606, −4.64674453580542058632471879852, −4.53507047752588653882541464811, −4.43238676642480667306255207838, −3.95157743770693289972200245937, −3.22369915290844804845614088379, −2.77879340538732471404902232733, −2.43461805855537396249455206233, −1.65176570952002498107029789879, −1.34327336253784489312356493318, 0, 0, 1.34327336253784489312356493318, 1.65176570952002498107029789879, 2.43461805855537396249455206233, 2.77879340538732471404902232733, 3.22369915290844804845614088379, 3.95157743770693289972200245937, 4.43238676642480667306255207838, 4.53507047752588653882541464811, 4.64674453580542058632471879852, 5.67703750528507140179191063606, 5.90735893405611094874501195460, 6.08766621867549647746327852455, 6.68710253522566000263131383101, 6.85961694364785670576843052593, 7.46099889733317650240924556944, 7.79856665122842137546509773647, 8.339330707143783256402445841106, 8.394663982777576601807785052690

Graph of the $Z$-function along the critical line