Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $-0.894 + 0.447i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  i·2-s − 4-s + i·7-s + i·8-s − 3·11-s − 2i·13-s + 14-s + 16-s − 3i·17-s + 7·19-s + 3i·22-s − 2·26-s i·28-s − 6·29-s − 4·31-s i·32-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.5·4-s + 0.377i·7-s + 0.353i·8-s − 0.904·11-s − 0.554i·13-s + 0.267·14-s + 0.250·16-s − 0.727i·17-s + 1.60·19-s + 0.639i·22-s − 0.392·26-s − 0.188i·28-s − 1.11·29-s − 0.718·31-s − 0.176i·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.894 + 0.447i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (2899, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ -0.894 + 0.447i)$
$L(1)$  $\approx$  $0.9810938421$
$L(\frac12)$  $\approx$  $0.9810938421$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + iT \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - iT \)
good11 \( 1 + 3T + 11T^{2} \)
13 \( 1 + 2iT - 13T^{2} \)
17 \( 1 + 3iT - 17T^{2} \)
19 \( 1 - 7T + 19T^{2} \)
23 \( 1 - 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 - 8iT - 37T^{2} \)
41 \( 1 - 9T + 41T^{2} \)
43 \( 1 + 8iT - 43T^{2} \)
47 \( 1 - 6iT - 47T^{2} \)
53 \( 1 + 12iT - 53T^{2} \)
59 \( 1 - 12T + 59T^{2} \)
61 \( 1 + 10T + 61T^{2} \)
67 \( 1 + 7iT - 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 + 5iT - 73T^{2} \)
79 \( 1 + 14T + 79T^{2} \)
83 \( 1 + 9iT - 83T^{2} \)
89 \( 1 + 15T + 89T^{2} \)
97 \( 1 + 10iT - 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.422744676750707553716049824440, −7.68023298155020637923512157752, −7.07982932957253178256932905795, −5.67219923136630603838785016438, −5.39430893478400508669661365282, −4.44876803856771021257999655318, −3.28397378274944978768731934921, −2.78582662491447571525563785209, −1.65270176310480196297829155039, −0.32523492560136225421712528518, 1.21157222186398183894077341966, 2.55444404414442935285995910406, 3.68302071037248763598897225823, 4.37657507233285635145635599896, 5.46866095553103841793803729044, 5.78708378126927330382522670052, 6.94419783847639042748313663024, 7.50317155980427810880870642999, 8.001046879665573109320359018896, 9.036394571262452559748210518960

Graph of the $Z$-function along the critical line