Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $-0.636 + 0.771i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + (1.35 − 2.27i)7-s + 8-s − 2.71i·11-s − 6.54·13-s + (1.35 − 2.27i)14-s + 16-s − 1.53i·17-s − 2.30i·19-s − 2.71i·22-s − 3.83·23-s − 6.54·26-s + (1.35 − 2.27i)28-s − 3.83i·29-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s + (0.512 − 0.858i)7-s + 0.353·8-s − 0.817i·11-s − 1.81·13-s + (0.362 − 0.607i)14-s + 0.250·16-s − 0.371i·17-s − 0.528i·19-s − 0.577i·22-s − 0.799·23-s − 1.28·26-s + (0.256 − 0.429i)28-s − 0.711i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.636 + 0.771i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.636 + 0.771i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.636 + 0.771i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (3149, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ -0.636 + 0.771i)$
$L(1)$  $\approx$  $1.806950293$
$L(\frac12)$  $\approx$  $1.806950293$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (-1.35 + 2.27i)T \)
good11 \( 1 + 2.71iT - 11T^{2} \)
13 \( 1 + 6.54T + 13T^{2} \)
17 \( 1 + 1.53iT - 17T^{2} \)
19 \( 1 + 2.30iT - 19T^{2} \)
23 \( 1 + 3.83T + 23T^{2} \)
29 \( 1 + 3.83iT - 29T^{2} \)
31 \( 1 - 3.25iT - 31T^{2} \)
37 \( 1 + 3.01iT - 37T^{2} \)
41 \( 1 + 6.54T + 41T^{2} \)
43 \( 1 + 0.468iT - 43T^{2} \)
47 \( 1 - 9.11iT - 47T^{2} \)
53 \( 1 + 9.25T + 53T^{2} \)
59 \( 1 + 11.1T + 59T^{2} \)
61 \( 1 + 4.78iT - 61T^{2} \)
67 \( 1 + 13.5iT - 67T^{2} \)
71 \( 1 + 2.30iT - 71T^{2} \)
73 \( 1 - 11.4T + 73T^{2} \)
79 \( 1 - 12.6T + 79T^{2} \)
83 \( 1 - 13.0iT - 83T^{2} \)
89 \( 1 - 9.60T + 89T^{2} \)
97 \( 1 + 16.9T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.053350049993478436840076867637, −7.69015754326173372395675709047, −6.86032790742825215108862003154, −6.15537213183624709438406280426, −5.02077230288607430970458112757, −4.74035107979608636157105182828, −3.71192994878061393164178472531, −2.83566115920167901717179092366, −1.84498342170850924875159663402, −0.38656616488429029136967595805, 1.79604950851459884046234479822, 2.35718366561643472085788156160, 3.41567140822493520066403196785, 4.54945455085732201141903341514, 4.99148618556121377600836081687, 5.76920119003353640781825785047, 6.62815907088103620692838855958, 7.45686541821454645138046800426, 8.011380591241677664234627700373, 8.927215016903822288478334608998

Graph of the $Z$-function along the critical line