Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $-0.826 + 0.562i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + (−1.93 + 1.80i)7-s − 8-s + 3.87i·11-s − 1.60·13-s + (1.93 − 1.80i)14-s + 16-s + 8.11i·17-s + 2.63i·19-s − 3.87i·22-s − 5.47·23-s + 1.60·26-s + (−1.93 + 1.80i)28-s − 5.47i·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + (−0.732 + 0.681i)7-s − 0.353·8-s + 1.16i·11-s − 0.445·13-s + (0.517 − 0.481i)14-s + 0.250·16-s + 1.96i·17-s + 0.605i·19-s − 0.825i·22-s − 1.14·23-s + 0.314·26-s + (−0.366 + 0.340i)28-s − 1.01i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.826 + 0.562i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.826 + 0.562i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.826 + 0.562i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (3149, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ -0.826 + 0.562i)$
$L(1)$  $\approx$  $0.2135315847$
$L(\frac12)$  $\approx$  $0.2135315847$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (1.93 - 1.80i)T \)
good11 \( 1 - 3.87iT - 11T^{2} \)
13 \( 1 + 1.60T + 13T^{2} \)
17 \( 1 - 8.11iT - 17T^{2} \)
19 \( 1 - 2.63iT - 19T^{2} \)
23 \( 1 + 5.47T + 23T^{2} \)
29 \( 1 + 5.47iT - 29T^{2} \)
31 \( 1 - 3.73iT - 31T^{2} \)
37 \( 1 + 4.51iT - 37T^{2} \)
41 \( 1 - 1.60T + 41T^{2} \)
43 \( 1 + 10.1iT - 43T^{2} \)
47 \( 1 - 11.1iT - 47T^{2} \)
53 \( 1 - 2.26T + 53T^{2} \)
59 \( 1 - 4.61T + 59T^{2} \)
61 \( 1 + 11.8iT - 61T^{2} \)
67 \( 1 + 6.90iT - 67T^{2} \)
71 \( 1 - 2.63iT - 71T^{2} \)
73 \( 1 + 13.7T + 73T^{2} \)
79 \( 1 - 8.01T + 79T^{2} \)
83 \( 1 + 3.20iT - 83T^{2} \)
89 \( 1 + 17.8T + 89T^{2} \)
97 \( 1 + 8.68T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.160077437288898496421940837080, −8.373565542811946055134514175359, −7.78183728373465723732927161167, −6.93878577293575355081781582333, −6.14447520481658555671742602153, −5.63749653713096326543381933131, −4.35670623001439732940723105477, −3.57491806773274905914523954273, −2.33781288695137898802605932851, −1.73712502031506145192815842108, 0.094276112353557039839528094392, 1.00960643775017485623493210670, 2.58582757916499255223281476691, 3.18201809179626461189918601469, 4.24822064416132024000975287154, 5.29125089740733730397712165848, 6.12570582086976718794084546004, 6.97962167907580436905124872397, 7.38620060802062622652795677142, 8.327457864955381261680302174996

Graph of the $Z$-function along the critical line