Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $0.656 - 0.754i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + (−2.23 − 1.41i)7-s − 8-s − 1.41i·11-s − 5.39·13-s + (2.23 + 1.41i)14-s + 16-s + 2.23i·17-s − 1.30i·19-s + 1.41i·22-s − 23-s + 5.39·26-s + (−2.23 − 1.41i)28-s − 9.24i·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + (−0.845 − 0.534i)7-s − 0.353·8-s − 0.426i·11-s − 1.49·13-s + (0.597 + 0.377i)14-s + 0.250·16-s + 0.542i·17-s − 0.300i·19-s + 0.301i·22-s − 0.208·23-s + 1.05·26-s + (−0.422 − 0.267i)28-s − 1.71i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.656 - 0.754i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.656 - 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $0.656 - 0.754i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (3149, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ 0.656 - 0.754i)$
$L(1)$  $\approx$  $0.6613537780$
$L(\frac12)$  $\approx$  $0.6613537780$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (2.23 + 1.41i)T \)
good11 \( 1 + 1.41iT - 11T^{2} \)
13 \( 1 + 5.39T + 13T^{2} \)
17 \( 1 - 2.23iT - 17T^{2} \)
19 \( 1 + 1.30iT - 19T^{2} \)
23 \( 1 + T + 23T^{2} \)
29 \( 1 + 9.24iT - 29T^{2} \)
31 \( 1 - 8.56iT - 31T^{2} \)
37 \( 1 - 2.82iT - 37T^{2} \)
41 \( 1 + 4.08T + 41T^{2} \)
43 \( 1 - 6.41iT - 43T^{2} \)
47 \( 1 + 7.63iT - 47T^{2} \)
53 \( 1 - 6.07T + 53T^{2} \)
59 \( 1 - 11.7T + 59T^{2} \)
61 \( 1 - 5.39iT - 61T^{2} \)
67 \( 1 - 67T^{2} \)
71 \( 1 - 4.34iT - 71T^{2} \)
73 \( 1 + 5.01T + 73T^{2} \)
79 \( 1 + 1.07T + 79T^{2} \)
83 \( 1 - 8.01iT - 83T^{2} \)
89 \( 1 - 15.2T + 89T^{2} \)
97 \( 1 - 18.4T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.777498189208152192420604760553, −8.088349347316859775973973270391, −7.26524646419629485788594199377, −6.74198194859854957768089154789, −5.95227652763346574707640610176, −4.98587823893252845716648431606, −3.97494674627272059879656695965, −3.03925044760253783128288857005, −2.18018595585389559316627035009, −0.76125672152594412186332497541, 0.35889591257301730401713236085, 1.99097960309358159841943461110, 2.69294376489547866044025259639, 3.66819628203310362121817134687, 4.86576560254860728955438031821, 5.59859165012483129956968771254, 6.51044830494240808813427874865, 7.22801380789945834350855806569, 7.71378036664053121502587312307, 8.815442216878316027236874902709

Graph of the $Z$-function along the critical line