Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $-0.916 - 0.401i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (−2.09 + 1.62i)7-s − 0.999·8-s + (2.59 + 1.5i)11-s + 2.44·13-s + (−2.44 − 0.999i)14-s + (−0.5 − 0.866i)16-s + (−0.878 − 0.507i)17-s + (0.878 − 0.507i)19-s + 3i·22-s + (2.12 + 3.67i)23-s + (1.22 + 2.12i)26-s + (−0.358 − 2.62i)28-s − 1.24i·29-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.790 + 0.612i)7-s − 0.353·8-s + (0.783 + 0.452i)11-s + 0.679·13-s + (−0.654 − 0.267i)14-s + (−0.125 − 0.216i)16-s + (−0.213 − 0.123i)17-s + (0.201 − 0.116i)19-s + 0.639i·22-s + (0.442 + 0.766i)23-s + (0.240 + 0.416i)26-s + (−0.0677 − 0.495i)28-s − 0.230i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.916 - 0.401i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.916 - 0.401i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.916 - 0.401i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (899, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ -0.916 - 0.401i)$
$L(1)$  $\approx$  $1.597304434$
$L(\frac12)$  $\approx$  $1.597304434$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (2.09 - 1.62i)T \)
good11 \( 1 + (-2.59 - 1.5i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 - 2.44T + 13T^{2} \)
17 \( 1 + (0.878 + 0.507i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-0.878 + 0.507i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2.12 - 3.67i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + 1.24iT - 29T^{2} \)
31 \( 1 + (-4.86 - 2.80i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (7.13 - 4.12i)T + (18.5 - 32.0i)T^{2} \)
41 \( 1 + 2.02T + 41T^{2} \)
43 \( 1 - 8.24iT - 43T^{2} \)
47 \( 1 + (-0.878 + 0.507i)T + (23.5 - 40.7i)T^{2} \)
53 \( 1 + (-0.621 + 1.07i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (5.76 - 9.98i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-5.12 + 2.95i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (8.66 + 5i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 - 10.2iT - 71T^{2} \)
73 \( 1 + (4.18 - 7.24i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (5.62 + 9.73i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 3.16iT - 83T^{2} \)
89 \( 1 + (-5.19 - 9i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 3.76T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.908933900722681695950443088042, −8.331346690402843717705919499088, −7.29443187609592745955497929368, −6.67222309082693005191198851132, −6.09320799071587366276894662783, −5.29142565877515405797950900733, −4.41922321926008724060312315549, −3.52069347166313669722670002628, −2.77948626662283703340830774911, −1.37906134474279920846647837273, 0.46025222438845360600323756199, 1.54876355757100120027580658059, 2.82007384387539619283710943897, 3.63247295599865092627920906428, 4.17208153399803660364741905208, 5.20814026801967413274889079283, 6.18795661234426156809141386654, 6.62553899960187406467621761604, 7.53629839800169053883061833527, 8.673407387007682553833587421686

Graph of the $Z$-function along the critical line