Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $0.349 + 0.936i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + (−2.63 − 0.189i)7-s + 0.999·8-s + (−2.55 + 1.47i)11-s + 3.93·13-s + (1.48 − 2.19i)14-s + (−0.5 + 0.866i)16-s + (0.346 − 0.199i)17-s + (−0.0305 − 0.0176i)19-s − 2.94i·22-s + (1.86 − 3.23i)23-s + (−1.96 + 3.40i)26-s + (1.15 + 2.38i)28-s + 8.89i·29-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + (−0.997 − 0.0716i)7-s + 0.353·8-s + (−0.769 + 0.444i)11-s + 1.09·13-s + (0.396 − 0.585i)14-s + (−0.125 + 0.216i)16-s + (0.0839 − 0.0484i)17-s + (−0.00700 − 0.00404i)19-s − 0.628i·22-s + (0.389 − 0.673i)23-s + (−0.385 + 0.667i)26-s + (0.218 + 0.449i)28-s + 1.65i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.349 + 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.349 + 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $0.349 + 0.936i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (1349, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ 0.349 + 0.936i)$
$L(1)$  $\approx$  $0.6117924853$
$L(\frac12)$  $\approx$  $0.6117924853$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (0.5 - 0.866i)T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (2.63 + 0.189i)T \)
good11 \( 1 + (2.55 - 1.47i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 - 3.93T + 13T^{2} \)
17 \( 1 + (-0.346 + 0.199i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (0.0305 + 0.0176i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-1.86 + 3.23i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 - 8.89iT - 29T^{2} \)
31 \( 1 + (-0.717 + 0.414i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (6.86 + 3.96i)T + (18.5 + 32.0i)T^{2} \)
41 \( 1 + 6.31T + 41T^{2} \)
43 \( 1 + 3.03iT - 43T^{2} \)
47 \( 1 + (5.02 + 2.90i)T + (23.5 + 40.7i)T^{2} \)
53 \( 1 + (-2.14 - 3.72i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (-2.78 - 4.82i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (9.97 + 5.76i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (-10.8 + 6.25i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + 1.93iT - 71T^{2} \)
73 \( 1 + (0.171 + 0.297i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (-4.15 + 7.19i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 10.3iT - 83T^{2} \)
89 \( 1 + (3.08 - 5.34i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + 15.6T + 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.667485936567323508775938896138, −7.74249750761879843241449312642, −6.94097692720658197964966311160, −6.48604830225583808833657463644, −5.57116787512432617904017166032, −4.89736911671419365075431986080, −3.76237861132350445412757294782, −2.98548552421179873907049105026, −1.66571667756371373200642055637, −0.24861432756776822433932023453, 1.03236809458050961050292931789, 2.31891230570068307804751129728, 3.25796915075329272736895513582, 3.76907726440024110242718147394, 4.95713796967914377703176437697, 5.86757140241846843003884005583, 6.53809119226391635500962518171, 7.45686985200903527028662630966, 8.340241329063784385964062386038, 8.748679925157395628478921680767

Graph of the $Z$-function along the critical line