Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $0.968 + 0.249i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (2.24 + 1.39i)7-s − 0.999i·8-s + (−1.37 + 0.796i)11-s − 0.925i·13-s + (−1.24 − 2.33i)14-s + (−0.5 + 0.866i)16-s + (1.97 + 3.42i)17-s + (−0.541 − 0.312i)19-s + 1.59·22-s + (−6.74 − 3.89i)23-s + (−0.462 + 0.801i)26-s + (−0.0890 + 2.64i)28-s − 9.34i·29-s + ⋯
L(s)  = 1  + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (0.848 + 0.528i)7-s − 0.353i·8-s + (−0.415 + 0.240i)11-s − 0.256i·13-s + (−0.332 − 0.623i)14-s + (−0.125 + 0.216i)16-s + (0.479 + 0.831i)17-s + (−0.124 − 0.0717i)19-s + 0.339·22-s + (−1.40 − 0.811i)23-s + (−0.0907 + 0.157i)26-s + (−0.0168 + 0.499i)28-s − 1.73i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 + 0.249i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 + 0.249i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $0.968 + 0.249i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (1601, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ 0.968 + 0.249i)$
$L(1)$  $\approx$  $1.446775095$
$L(\frac12)$  $\approx$  $1.446775095$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (0.866 + 0.5i)T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (-2.24 - 1.39i)T \)
good11 \( 1 + (1.37 - 0.796i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + 0.925iT - 13T^{2} \)
17 \( 1 + (-1.97 - 3.42i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (0.541 + 0.312i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (6.74 + 3.89i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + 9.34iT - 29T^{2} \)
31 \( 1 + (-8.94 + 5.16i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (-0.213 + 0.369i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 - 8.35T + 41T^{2} \)
43 \( 1 - 6.27T + 43T^{2} \)
47 \( 1 + (1.39 - 2.40i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (2.90 - 1.67i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-3.10 - 5.38i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-9.52 - 5.50i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (0.178 + 0.308i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 9.07iT - 71T^{2} \)
73 \( 1 + (5.91 - 3.41i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (-4.52 + 7.83i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 - 0.809T + 83T^{2} \)
89 \( 1 + (-2.00 + 3.47i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 - 7.87iT - 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.531019017715071415725470048244, −7.936912172927600072686103858946, −7.63228864062082881524179689948, −6.20791588475365732489353438800, −5.85934128219041593885175541623, −4.59411653048448937667199035832, −4.01914814722812591620671690834, −2.61104002830996067532967943832, −2.11409766274081725909402086631, −0.789889582233180587886414749012, 0.831101995349270171940254445423, 1.84275559055773664974954338456, 2.99803739119504574581516075563, 4.11935747735631230053256876123, 5.02849161826461752235871059764, 5.64562077918693776605170270703, 6.67729886804078243842769812438, 7.32674679100608829946332140625, 8.027420833911541811619056736550, 8.505018809887372564357098101602

Graph of the $Z$-function along the critical line