Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $-0.243 - 0.969i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (−2.54 + 0.732i)7-s − 0.999i·8-s + (−2.07 + 1.19i)11-s − 5.67i·13-s + (2.56 + 0.636i)14-s + (−0.5 + 0.866i)16-s + (−1.03 − 1.79i)17-s + (5.12 + 2.95i)19-s + 2.39·22-s + (1.61 + 0.930i)23-s + (−2.83 + 4.91i)26-s + (−1.90 − 1.83i)28-s − 4.88i·29-s + ⋯
L(s)  = 1  + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.960 + 0.276i)7-s − 0.353i·8-s + (−0.625 + 0.361i)11-s − 1.57i·13-s + (0.686 + 0.170i)14-s + (−0.125 + 0.216i)16-s + (−0.251 − 0.435i)17-s + (1.17 + 0.678i)19-s + 0.511·22-s + (0.336 + 0.194i)23-s + (−0.556 + 0.964i)26-s + (−0.360 − 0.346i)28-s − 0.907i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.243 - 0.969i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.243 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.243 - 0.969i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (1601, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ -0.243 - 0.969i)$
$L(1)$  $\approx$  $0.3997231950$
$L(\frac12)$  $\approx$  $0.3997231950$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (0.866 + 0.5i)T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (2.54 - 0.732i)T \)
good11 \( 1 + (2.07 - 1.19i)T + (5.5 - 9.52i)T^{2} \)
13 \( 1 + 5.67iT - 13T^{2} \)
17 \( 1 + (1.03 + 1.79i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (-5.12 - 2.95i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-1.61 - 0.930i)T + (11.5 + 19.9i)T^{2} \)
29 \( 1 + 4.88iT - 29T^{2} \)
31 \( 1 + (3.92 - 2.26i)T + (15.5 - 26.8i)T^{2} \)
37 \( 1 + (-1.48 + 2.57i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + 7.04T + 41T^{2} \)
43 \( 1 - 8.55T + 43T^{2} \)
47 \( 1 + (2.78 - 4.83i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (3.62 - 2.09i)T + (26.5 - 45.8i)T^{2} \)
59 \( 1 + (-1.00 - 1.73i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-10.7 - 6.22i)T + (30.5 + 52.8i)T^{2} \)
67 \( 1 + (3.81 + 6.60i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 - 9.14iT - 71T^{2} \)
73 \( 1 + (0.937 - 0.541i)T + (36.5 - 63.2i)T^{2} \)
79 \( 1 + (8.38 - 14.5i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 13.6T + 83T^{2} \)
89 \( 1 + (6.63 - 11.4i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 - 12.8iT - 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.009075516347754804638518026986, −8.126642401087153549779965834773, −7.54897115995287804627663199272, −6.86092539703980353014592114133, −5.75103942311828710190587316682, −5.31514454662398941848465379573, −3.96109671556786648642090227601, −3.05666253625333393959019831425, −2.52736668561731869106652458184, −1.04366121652603481281035680916, 0.17466954966819032871776834939, 1.55957759147782562256065651915, 2.73534780165374338665951142449, 3.63953369368154518415629060421, 4.68849701113355931803925767769, 5.56492985136236440413664937555, 6.44130794206898498823928826284, 7.00074133535215944361579360172, 7.57861954935372081760452577857, 8.683027244166637071203523311857

Graph of the $Z$-function along the critical line