Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $-0.888 - 0.459i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (−1.29 + 2.30i)7-s − 0.999i·8-s + (−1.11 − 0.641i)11-s + 6.14i·13-s + (0.0298 + 2.64i)14-s + (−0.5 − 0.866i)16-s + (3.26 − 5.64i)17-s + (−5.22 + 3.01i)19-s − 1.28·22-s + (−2.49 + 1.43i)23-s + (3.07 + 5.32i)26-s + (1.34 + 2.27i)28-s − 1.35i·29-s + ⋯
L(s)  = 1  + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.490 + 0.871i)7-s − 0.353i·8-s + (−0.335 − 0.193i)11-s + 1.70i·13-s + (0.00798 + 0.707i)14-s + (−0.125 − 0.216i)16-s + (0.790 − 1.37i)17-s + (−1.19 + 0.692i)19-s − 0.273·22-s + (−0.519 + 0.300i)23-s + (0.602 + 1.04i)26-s + (0.254 + 0.430i)28-s − 0.250i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.888 - 0.459i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.888 - 0.459i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.888 - 0.459i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (1151, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ -0.888 - 0.459i)$
$L(1)$  $\approx$  $0.2882578230$
$L(\frac12)$  $\approx$  $0.2882578230$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (-0.866 + 0.5i)T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (1.29 - 2.30i)T \)
good11 \( 1 + (1.11 + 0.641i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 - 6.14iT - 13T^{2} \)
17 \( 1 + (-3.26 + 5.64i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (5.22 - 3.01i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (2.49 - 1.43i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 + 1.35iT - 29T^{2} \)
31 \( 1 + (7.49 + 4.32i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (4.76 + 8.25i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 8.71T + 41T^{2} \)
43 \( 1 - 5.35T + 43T^{2} \)
47 \( 1 + (-0.403 - 0.698i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (5.77 + 3.33i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (0.798 - 1.38i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (5.50 - 3.17i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (-2.69 + 4.67i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 15.6iT - 71T^{2} \)
73 \( 1 + (10.7 + 6.20i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (-5.59 - 9.68i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 3.74T + 83T^{2} \)
89 \( 1 + (-1.81 - 3.15i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 8.76iT - 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−9.289962964290197273394130240005, −8.329391709313804330321388421698, −7.33382598025494197072077385908, −6.62349198267503958797283320024, −5.82333237500961183466865028563, −5.25277022660306104721103471637, −4.22341309708609008569285883974, −3.52882022467508892340736505496, −2.45028614357206313139748874146, −1.79579339541788859782670054146, 0.06470677234550883040549717418, 1.64036792727661367938506647741, 3.03842845829108841022846336523, 3.55355695193598902939528794530, 4.50680160369136520346393287975, 5.31946029293738465948120236080, 6.10745334221535147066199823535, 6.75574118278101203678687442559, 7.62741778612834176732978764642, 8.133314901171068263246655255477

Graph of the $Z$-function along the critical line