Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $-0.433 + 0.901i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (2.34 + 1.22i)7-s + 0.999i·8-s + (−2.03 − 1.17i)11-s − 4.64i·13-s + (−2.64 + 0.107i)14-s + (−0.5 − 0.866i)16-s + (2.28 − 3.95i)17-s + (0.491 − 0.283i)19-s + 2.35·22-s + (−5.04 + 2.91i)23-s + (2.32 + 4.02i)26-s + (2.23 − 1.41i)28-s + 2.55i·29-s + ⋯
L(s)  = 1  + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (0.885 + 0.464i)7-s + 0.353i·8-s + (−0.615 − 0.355i)11-s − 1.28i·13-s + (−0.706 + 0.0287i)14-s + (−0.125 − 0.216i)16-s + (0.553 − 0.958i)17-s + (0.112 − 0.0650i)19-s + 0.502·22-s + (−1.05 + 0.607i)23-s + (0.455 + 0.789i)26-s + (0.422 − 0.267i)28-s + 0.474i·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.433 + 0.901i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.433 + 0.901i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $-0.433 + 0.901i$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (1151, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ -0.433 + 0.901i)$
$L(1)$  $\approx$  $0.6585052108$
$L(\frac12)$  $\approx$  $0.6585052108$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 + (0.866 - 0.5i)T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + (-2.34 - 1.22i)T \)
good11 \( 1 + (2.03 + 1.17i)T + (5.5 + 9.52i)T^{2} \)
13 \( 1 + 4.64iT - 13T^{2} \)
17 \( 1 + (-2.28 + 3.95i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-0.491 + 0.283i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (5.04 - 2.91i)T + (11.5 - 19.9i)T^{2} \)
29 \( 1 - 2.55iT - 29T^{2} \)
31 \( 1 + (1.89 + 1.09i)T + (15.5 + 26.8i)T^{2} \)
37 \( 1 + (4.63 + 8.02i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + 8.68T + 41T^{2} \)
43 \( 1 - 6.57T + 43T^{2} \)
47 \( 1 + (3.15 + 5.46i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (10.5 + 6.07i)T + (26.5 + 45.8i)T^{2} \)
59 \( 1 + (1.67 - 2.90i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (6.85 - 3.95i)T + (30.5 - 52.8i)T^{2} \)
67 \( 1 + (2.00 - 3.46i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 2.02iT - 71T^{2} \)
73 \( 1 + (7.11 + 4.10i)T + (36.5 + 63.2i)T^{2} \)
79 \( 1 + (-4.13 - 7.15i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 0.171T + 83T^{2} \)
89 \( 1 + (-2.72 - 4.72i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + 10.8iT - 97T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.373992246840724794855722523872, −7.70315478031186583222093467657, −7.31705162608462177734135777763, −6.04801237046449953402360308070, −5.42463019740908411909203951465, −4.95776970706486767402955221665, −3.54971994414636121515724096131, −2.61637421164503564201677227844, −1.56029197685829102836565718108, −0.24385783620250910375011477782, 1.45355915861996676923794115518, 2.03561317851855852203652568718, 3.30216992051751145944476044161, 4.27661361577337916936160871288, 4.86294527120257477886547351282, 6.06101048339835211750953856319, 6.78928349523541339964499376073, 7.76237647415163110658503455845, 8.060537386632545591002524811218, 8.904869655996276437635843656611

Graph of the $Z$-function along the critical line