Properties

Degree 2
Conductor $ 2 \cdot 3^{2} \cdot 5^{2} \cdot 7 $
Sign $1$
Motivic weight 1
Primitive yes
Self-dual yes
Analytic rank 0

Origins

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 4·11-s + 2·13-s + 14-s + 16-s + 2·17-s + 4·19-s + 4·22-s − 8·23-s + 2·26-s + 28-s + 2·29-s + 32-s + 2·34-s − 6·37-s + 4·38-s + 6·41-s + 4·43-s + 4·44-s − 8·46-s + 49-s + 2·52-s − 10·53-s + 56-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s + 1.20·11-s + 0.554·13-s + 0.267·14-s + 1/4·16-s + 0.485·17-s + 0.917·19-s + 0.852·22-s − 1.66·23-s + 0.392·26-s + 0.188·28-s + 0.371·29-s + 0.176·32-s + 0.342·34-s − 0.986·37-s + 0.648·38-s + 0.937·41-s + 0.609·43-s + 0.603·44-s − 1.17·46-s + 1/7·49-s + 0.277·52-s − 1.37·53-s + 0.133·56-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(3150\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7\)
\( \varepsilon \)  =  $1$
motivic weight  =  \(1\)
character  :  $\chi_{3150} (1, \cdot )$
primitive  :  yes
self-dual  :  yes
analytic rank  =  0
Selberg data  =  $(2,\ 3150,\ (\ :1/2),\ 1)$
$L(1)$  $\approx$  $3.560276599$
$L(\frac12)$  $\approx$  $3.560276599$
$L(\frac{3}{2})$   not available
$L(1)$   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{2,\;3,\;5,\;7\}$,\[F_p(T) = 1 - a_p T + p T^2 .\]If $p \in \{2,\;3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 - 4 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 - 4 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 14 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−8.572361691247425818962009402284, −7.87057848456857363225229546010, −7.09304870672129430507335279038, −6.24664410799738980273854798490, −5.70967592536431225977171521773, −4.75782304131629250034613305389, −3.93839119387133171902822326777, −3.33286092856857532309906421674, −2.07302940285776049892947889691, −1.12260455198864207776618149898, 1.12260455198864207776618149898, 2.07302940285776049892947889691, 3.33286092856857532309906421674, 3.93839119387133171902822326777, 4.75782304131629250034613305389, 5.70967592536431225977171521773, 6.24664410799738980273854798490, 7.09304870672129430507335279038, 7.87057848456857363225229546010, 8.572361691247425818962009402284

Graph of the $Z$-function along the critical line