Properties

Degree 2
Conductor $ 3^{2} \cdot 5 \cdot 7 $
Sign $-0.161 - 0.986i$
Motivic weight 1
Primitive yes
Self-dual no
Analytic rank 0

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.540 + 0.540i)2-s + 1.41i·4-s + (1.03 + 1.98i)5-s + (2.57 − 0.614i)7-s + (−1.84 − 1.84i)8-s + (−1.63 − 0.510i)10-s + 3.85·11-s + (−3.66 + 3.66i)13-s + (−1.05 + 1.72i)14-s − 0.839·16-s + (−1.49 − 1.49i)17-s + 0.0697·19-s + (−2.80 + 1.46i)20-s + (−2.08 + 2.08i)22-s + (0.534 + 0.534i)23-s + ⋯
L(s)  = 1  + (−0.381 + 0.381i)2-s + 0.708i·4-s + (0.463 + 0.886i)5-s + (0.972 − 0.232i)7-s + (−0.652 − 0.652i)8-s + (−0.515 − 0.161i)10-s + 1.16·11-s + (−1.01 + 1.01i)13-s + (−0.282 + 0.460i)14-s − 0.209·16-s + (−0.361 − 0.361i)17-s + 0.0160·19-s + (−0.627 + 0.328i)20-s + (−0.443 + 0.443i)22-s + (0.111 + 0.111i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.161 - 0.986i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.161 - 0.986i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

\( d \)  =  \(2\)
\( N \)  =  \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
\( \varepsilon \)  =  $-0.161 - 0.986i$
motivic weight  =  \(1\)
character  :  $\chi_{315} (118, \cdot )$
primitive  :  yes
self-dual  :  no
analytic rank  =  \(0\)
Selberg data  =  \((2,\ 315,\ (\ :1/2),\ -0.161 - 0.986i)\)
\(L(1)\)  \(\approx\)  \(0.783623 + 0.922681i\)
\(L(\frac12)\)  \(\approx\)  \(0.783623 + 0.922681i\)
\(L(\frac{3}{2})\)   not available
\(L(1)\)   not available

Euler product

\[L(s) = \prod_{p \text{ prime}} F_p(p^{-s})^{-1} \]where, for $p \notin \{3,\;5,\;7\}$,\(F_p(T)\) is a polynomial of degree 2. If $p \in \{3,\;5,\;7\}$, then $F_p(T)$ is a polynomial of degree at most 1.
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + (-1.03 - 1.98i)T \)
7 \( 1 + (-2.57 + 0.614i)T \)
good2 \( 1 + (0.540 - 0.540i)T - 2iT^{2} \)
11 \( 1 - 3.85T + 11T^{2} \)
13 \( 1 + (3.66 - 3.66i)T - 13iT^{2} \)
17 \( 1 + (1.49 + 1.49i)T + 17iT^{2} \)
19 \( 1 - 0.0697T + 19T^{2} \)
23 \( 1 + (-0.534 - 0.534i)T + 23iT^{2} \)
29 \( 1 - 2.77iT - 29T^{2} \)
31 \( 1 - 2.39iT - 31T^{2} \)
37 \( 1 + (-6.18 + 6.18i)T - 37iT^{2} \)
41 \( 1 - 8.68iT - 41T^{2} \)
43 \( 1 + (2.77 + 2.77i)T + 43iT^{2} \)
47 \( 1 + (5.49 + 5.49i)T + 47iT^{2} \)
53 \( 1 + (6.13 + 6.13i)T + 53iT^{2} \)
59 \( 1 - 6.97T + 59T^{2} \)
61 \( 1 + 14.3iT - 61T^{2} \)
67 \( 1 + (-0.416 + 0.416i)T - 67iT^{2} \)
71 \( 1 - 8.12T + 71T^{2} \)
73 \( 1 + (-9.55 + 9.55i)T - 73iT^{2} \)
79 \( 1 - 9.86iT - 79T^{2} \)
83 \( 1 + (1.63 - 1.63i)T - 83iT^{2} \)
89 \( 1 - 5.05T + 89T^{2} \)
97 \( 1 + (-6.85 - 6.85i)T + 97iT^{2} \)
show more
show less
\[\begin{aligned}L(s) = \prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\end{aligned}\]

Imaginary part of the first few zeros on the critical line

−11.64276441478461656469613816210, −11.23378600208580871508519252502, −9.787444090206641399413435764719, −9.140140485181406409271641826538, −8.008317319184307878134581920755, −7.03566684060290238877344389703, −6.52865685182688344684262763782, −4.82489325763853502464693518480, −3.60572319243355704100439700382, −2.08911250615361279838011224130, 1.10087557538823301430177186745, 2.31398268915615705517266093093, 4.47319363479214679763325679583, 5.34716434369297877943105767339, 6.28538450906122068443181371140, 7.88156775457372118873862051941, 8.790834699668182587489920486606, 9.548915466544013831636491071955, 10.35009760832894304527385800864, 11.43094238991798112679082273637

Graph of the $Z$-function along the critical line