Properties

Label 8-315e4-1.1-c1e4-0-7
Degree $8$
Conductor $9845600625$
Sign $1$
Analytic cond. $40.0267$
Root an. cond. $1.58596$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·4-s + 4·5-s + 6·9-s + 6·11-s + 4·16-s − 24·19-s − 12·20-s + 5·25-s + 20·29-s − 16·31-s − 18·36-s − 4·41-s − 18·44-s + 24·45-s + 49-s + 24·55-s + 8·59-s − 20·61-s − 9·64-s − 20·71-s + 72·76-s + 14·79-s + 16·80-s + 27·81-s + 72·89-s − 96·95-s + 36·99-s + ⋯
L(s)  = 1  − 3/2·4-s + 1.78·5-s + 2·9-s + 1.80·11-s + 16-s − 5.50·19-s − 2.68·20-s + 25-s + 3.71·29-s − 2.87·31-s − 3·36-s − 0.624·41-s − 2.71·44-s + 3.57·45-s + 1/7·49-s + 3.23·55-s + 1.04·59-s − 2.56·61-s − 9/8·64-s − 2.37·71-s + 8.25·76-s + 1.57·79-s + 1.78·80-s + 3·81-s + 7.63·89-s − 9.84·95-s + 3.61·99-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{8} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(3^{8} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(40.0267\)
Root analytic conductor: \(1.58596\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 3^{8} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(1.997681444\)
\(L(\frac12)\) \(\approx\) \(1.997681444\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2$ \( ( 1 - p T^{2} )^{2} \)
5$C_2^2$ \( 1 - 4 T + 11 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
7$C_2^2$ \( 1 - T^{2} + T^{4} \)
good2$C_2^3$ \( 1 + 3 T^{2} + 5 T^{4} + 3 p^{2} T^{6} + p^{4} T^{8} \)
11$C_2^2$ \( ( 1 - 3 T - 2 T^{2} - 3 p T^{3} + p^{2} T^{4} )^{2} \)
13$C_2^3$ \( 1 + 25 T^{2} + 456 T^{4} + 25 p^{2} T^{6} + p^{4} T^{8} \)
17$C_2^2$ \( ( 1 + 15 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 + p T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 10 T + 71 T^{2} - 10 p T^{3} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 + 8 T + 33 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
37$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 + 2 T - 37 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \)
43$C_2^3$ \( 1 + 70 T^{2} + 3051 T^{4} + 70 p^{2} T^{6} + p^{4} T^{8} \)
47$C_2^3$ \( 1 + 13 T^{2} - 2040 T^{4} + 13 p^{2} T^{6} + p^{4} T^{8} \)
53$C_2^2$ \( ( 1 - 70 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2^2$ \( ( 1 - 4 T - 43 T^{2} - 4 p T^{3} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 10 T + 39 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \)
67$C_2^3$ \( 1 + 118 T^{2} + 9435 T^{4} + 118 p^{2} T^{6} + p^{4} T^{8} \)
71$C_2$ \( ( 1 + 5 T + p T^{2} )^{4} \)
73$C_2^2$ \( ( 1 - 137 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 7 T - 30 T^{2} - 7 p T^{3} + p^{2} T^{4} )^{2} \)
83$C_2^3$ \( 1 + 141 T^{2} + 12992 T^{4} + 141 p^{2} T^{6} + p^{4} T^{8} \)
89$C_2$ \( ( 1 - 18 T + p T^{2} )^{4} \)
97$C_2^2$$\times$$C_2^2$ \( ( 1 + 2 T^{2} + p^{2} T^{4} )( 1 + 167 T^{2} + p^{2} T^{4} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.776174752896853348922202379219, −8.357981900533143131951681217761, −7.953314737700527273525967080577, −7.951969760316942005286915588588, −7.44646811626751569166101267025, −6.98279660966498628837162444446, −6.81884260522802219274664819798, −6.59817826399178389796430865510, −6.35333956850444061378629582218, −6.20464139653574160431434222451, −6.04627201130400932013796927524, −5.73753709263598194581812969663, −5.01148511360456842377543932484, −4.94671168245845397176769528962, −4.51766033524863926662016071571, −4.37602846155523541962820697272, −4.35820986211682045510658817944, −3.93387277418203653643475218529, −3.56554701571254983224344504052, −3.24072600716166047601148258376, −2.38324604528608972742369904198, −2.02170218841923569028057418465, −1.87664749984015569127340094998, −1.55482727834239999611678247348, −0.65912522498567746488438829373, 0.65912522498567746488438829373, 1.55482727834239999611678247348, 1.87664749984015569127340094998, 2.02170218841923569028057418465, 2.38324604528608972742369904198, 3.24072600716166047601148258376, 3.56554701571254983224344504052, 3.93387277418203653643475218529, 4.35820986211682045510658817944, 4.37602846155523541962820697272, 4.51766033524863926662016071571, 4.94671168245845397176769528962, 5.01148511360456842377543932484, 5.73753709263598194581812969663, 6.04627201130400932013796927524, 6.20464139653574160431434222451, 6.35333956850444061378629582218, 6.59817826399178389796430865510, 6.81884260522802219274664819798, 6.98279660966498628837162444446, 7.44646811626751569166101267025, 7.951969760316942005286915588588, 7.953314737700527273525967080577, 8.357981900533143131951681217761, 8.776174752896853348922202379219

Graph of the $Z$-function along the critical line