Properties

Label 2-315-1.1-c9-0-81
Degree $2$
Conductor $315$
Sign $-1$
Analytic cond. $162.236$
Root an. cond. $12.7372$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 33.0·2-s + 582.·4-s − 625·5-s − 2.40e3·7-s + 2.34e3·8-s − 2.06e4·10-s + 2.11e4·11-s + 2.00e4·13-s − 7.94e4·14-s − 2.20e5·16-s + 6.33e5·17-s − 1.62e5·19-s − 3.64e5·20-s + 7.01e5·22-s − 5.02e5·23-s + 3.90e5·25-s + 6.62e5·26-s − 1.39e6·28-s + 5.70e6·29-s − 8.06e6·31-s − 8.50e6·32-s + 2.09e7·34-s + 1.50e6·35-s − 1.35e6·37-s − 5.36e6·38-s − 1.46e6·40-s − 1.81e7·41-s + ⋯
L(s)  = 1  + 1.46·2-s + 1.13·4-s − 0.447·5-s − 0.377·7-s + 0.202·8-s − 0.653·10-s + 0.436·11-s + 0.194·13-s − 0.552·14-s − 0.842·16-s + 1.83·17-s − 0.285·19-s − 0.509·20-s + 0.638·22-s − 0.374·23-s + 0.200·25-s + 0.284·26-s − 0.430·28-s + 1.49·29-s − 1.56·31-s − 1.43·32-s + 2.69·34-s + 0.169·35-s − 0.118·37-s − 0.417·38-s − 0.0904·40-s − 1.00·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(162.236\)
Root analytic conductor: \(12.7372\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 315,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 625T \)
7 \( 1 + 2.40e3T \)
good2 \( 1 - 33.0T + 512T^{2} \)
11 \( 1 - 2.11e4T + 2.35e9T^{2} \)
13 \( 1 - 2.00e4T + 1.06e10T^{2} \)
17 \( 1 - 6.33e5T + 1.18e11T^{2} \)
19 \( 1 + 1.62e5T + 3.22e11T^{2} \)
23 \( 1 + 5.02e5T + 1.80e12T^{2} \)
29 \( 1 - 5.70e6T + 1.45e13T^{2} \)
31 \( 1 + 8.06e6T + 2.64e13T^{2} \)
37 \( 1 + 1.35e6T + 1.29e14T^{2} \)
41 \( 1 + 1.81e7T + 3.27e14T^{2} \)
43 \( 1 + 1.87e7T + 5.02e14T^{2} \)
47 \( 1 - 1.62e7T + 1.11e15T^{2} \)
53 \( 1 + 6.15e7T + 3.29e15T^{2} \)
59 \( 1 + 1.80e8T + 8.66e15T^{2} \)
61 \( 1 + 4.79e7T + 1.16e16T^{2} \)
67 \( 1 - 1.70e8T + 2.72e16T^{2} \)
71 \( 1 + 2.30e8T + 4.58e16T^{2} \)
73 \( 1 + 3.14e8T + 5.88e16T^{2} \)
79 \( 1 + 5.26e8T + 1.19e17T^{2} \)
83 \( 1 - 6.06e8T + 1.86e17T^{2} \)
89 \( 1 + 6.25e8T + 3.50e17T^{2} \)
97 \( 1 + 1.95e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.762639159623929431209071468560, −8.608062959824889940772216486756, −7.44795713616238535408016937895, −6.43269473648641142762145087041, −5.60325304855538044867513812108, −4.60760790607431063486251286581, −3.60499554580727396893945834866, −3.01065370314627916851047811621, −1.48374305578700256848232013494, 0, 1.48374305578700256848232013494, 3.01065370314627916851047811621, 3.60499554580727396893945834866, 4.60760790607431063486251286581, 5.60325304855538044867513812108, 6.43269473648641142762145087041, 7.44795713616238535408016937895, 8.608062959824889940772216486756, 9.762639159623929431209071468560

Graph of the $Z$-function along the critical line