Properties

Label 2-315-1.1-c9-0-14
Degree $2$
Conductor $315$
Sign $1$
Analytic cond. $162.236$
Root an. cond. $12.7372$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 26.3·2-s + 181.·4-s − 625·5-s − 2.40e3·7-s − 8.69e3·8-s − 1.64e4·10-s + 2.24e3·11-s − 1.23e5·13-s − 6.32e4·14-s − 3.22e5·16-s + 1.87e4·17-s + 4.04e5·19-s − 1.13e5·20-s + 5.91e4·22-s − 1.75e6·23-s + 3.90e5·25-s − 3.25e6·26-s − 4.36e5·28-s − 3.94e6·29-s + 8.99e6·31-s − 4.03e6·32-s + 4.95e5·34-s + 1.50e6·35-s − 1.04e7·37-s + 1.06e7·38-s + 5.43e6·40-s − 3.02e6·41-s + ⋯
L(s)  = 1  + 1.16·2-s + 0.355·4-s − 0.447·5-s − 0.377·7-s − 0.750·8-s − 0.520·10-s + 0.0462·11-s − 1.19·13-s − 0.440·14-s − 1.22·16-s + 0.0545·17-s + 0.712·19-s − 0.158·20-s + 0.0538·22-s − 1.30·23-s + 0.200·25-s − 1.39·26-s − 0.134·28-s − 1.03·29-s + 1.74·31-s − 0.680·32-s + 0.0635·34-s + 0.169·35-s − 0.917·37-s + 0.829·38-s + 0.335·40-s − 0.167·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 315 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(315\)    =    \(3^{2} \cdot 5 \cdot 7\)
Sign: $1$
Analytic conductor: \(162.236\)
Root analytic conductor: \(12.7372\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 315,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.025300855\)
\(L(\frac12)\) \(\approx\) \(2.025300855\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 625T \)
7 \( 1 + 2.40e3T \)
good2 \( 1 - 26.3T + 512T^{2} \)
11 \( 1 - 2.24e3T + 2.35e9T^{2} \)
13 \( 1 + 1.23e5T + 1.06e10T^{2} \)
17 \( 1 - 1.87e4T + 1.18e11T^{2} \)
19 \( 1 - 4.04e5T + 3.22e11T^{2} \)
23 \( 1 + 1.75e6T + 1.80e12T^{2} \)
29 \( 1 + 3.94e6T + 1.45e13T^{2} \)
31 \( 1 - 8.99e6T + 2.64e13T^{2} \)
37 \( 1 + 1.04e7T + 1.29e14T^{2} \)
41 \( 1 + 3.02e6T + 3.27e14T^{2} \)
43 \( 1 - 1.60e7T + 5.02e14T^{2} \)
47 \( 1 - 3.97e7T + 1.11e15T^{2} \)
53 \( 1 + 4.08e7T + 3.29e15T^{2} \)
59 \( 1 + 1.60e8T + 8.66e15T^{2} \)
61 \( 1 - 1.49e8T + 1.16e16T^{2} \)
67 \( 1 - 5.12e7T + 2.72e16T^{2} \)
71 \( 1 - 3.35e8T + 4.58e16T^{2} \)
73 \( 1 - 1.35e8T + 5.88e16T^{2} \)
79 \( 1 - 1.65e8T + 1.19e17T^{2} \)
83 \( 1 - 1.61e8T + 1.86e17T^{2} \)
89 \( 1 + 1.00e9T + 3.50e17T^{2} \)
97 \( 1 + 2.89e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06714119761728645170323039803, −9.291265486685978819177547946846, −8.059195704844742061577077906875, −7.04969415679434844350810395234, −6.00478355891323906149691513245, −5.06867198490288604168787096801, −4.17710140888504093866311741419, −3.27366084986169726547234889647, −2.26616908005165407343441530810, −0.49491906700560086597567054399, 0.49491906700560086597567054399, 2.26616908005165407343441530810, 3.27366084986169726547234889647, 4.17710140888504093866311741419, 5.06867198490288604168787096801, 6.00478355891323906149691513245, 7.04969415679434844350810395234, 8.059195704844742061577077906875, 9.291265486685978819177547946846, 10.06714119761728645170323039803

Graph of the $Z$-function along the critical line