Properties

Label 8-312e4-1.1-c1e4-0-0
Degree $8$
Conductor $9475854336$
Sign $1$
Analytic cond. $38.5235$
Root an. cond. $1.57839$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 4·5-s − 2·7-s + 9-s + 2·11-s + 8·15-s + 4·17-s + 6·19-s + 4·21-s + 2·23-s − 10·25-s + 2·27-s − 6·29-s − 8·31-s − 4·33-s + 8·35-s + 12·37-s + 16·41-s − 2·43-s − 4·45-s − 20·47-s + 2·49-s − 8·51-s + 12·53-s − 8·55-s − 12·57-s − 4·59-s + ⋯
L(s)  = 1  − 1.15·3-s − 1.78·5-s − 0.755·7-s + 1/3·9-s + 0.603·11-s + 2.06·15-s + 0.970·17-s + 1.37·19-s + 0.872·21-s + 0.417·23-s − 2·25-s + 0.384·27-s − 1.11·29-s − 1.43·31-s − 0.696·33-s + 1.35·35-s + 1.97·37-s + 2.49·41-s − 0.304·43-s − 0.596·45-s − 2.91·47-s + 2/7·49-s − 1.12·51-s + 1.64·53-s − 1.07·55-s − 1.58·57-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{12} \cdot 3^{4} \cdot 13^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{12} \cdot 3^{4} \cdot 13^{4}\)
Sign: $1$
Analytic conductor: \(38.5235\)
Root analytic conductor: \(1.57839\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{12} \cdot 3^{4} \cdot 13^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.7147767608\)
\(L(\frac12)\) \(\approx\) \(0.7147767608\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3$C_2$ \( ( 1 + T + T^{2} )^{2} \)
13$C_2^2$ \( 1 + p T^{2} + p^{2} T^{4} \)
good5$C_2$ \( ( 1 + T + p T^{2} )^{4} \) 4.5.e_ba_cm_id
7$C_2^3$ \( 1 + 2 T + 2 T^{2} - 24 T^{3} - 73 T^{4} - 24 p T^{5} + 2 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \) 4.7.c_c_ay_acv
11$D_4\times C_2$ \( 1 - 2 T - 6 T^{2} + 24 T^{3} - 65 T^{4} + 24 p T^{5} - 6 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \) 4.11.ac_ag_y_acn
17$D_4\times C_2$ \( 1 - 4 T - 9 T^{2} + 36 T^{3} + 64 T^{4} + 36 p T^{5} - 9 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.17.ae_aj_bk_cm
19$D_4\times C_2$ \( 1 - 6 T + 2 T^{2} + 24 T^{3} + 111 T^{4} + 24 p T^{5} + 2 p^{2} T^{6} - 6 p^{3} T^{7} + p^{4} T^{8} \) 4.19.ag_c_y_eh
23$D_4\times C_2$ \( 1 - 2 T - 30 T^{2} + 24 T^{3} + 535 T^{4} + 24 p T^{5} - 30 p^{2} T^{6} - 2 p^{3} T^{7} + p^{4} T^{8} \) 4.23.ac_abe_y_up
29$C_2^2$ \( ( 1 + 3 T - 20 T^{2} + 3 p T^{3} + p^{2} T^{4} )^{2} \) 4.29.g_abf_cc_dwe
31$D_{4}$ \( ( 1 + 4 T + 14 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \) 4.31.i_bs_nw_epq
37$D_4\times C_2$ \( 1 - 12 T + 47 T^{2} - 276 T^{3} + 2712 T^{4} - 276 p T^{5} + 47 p^{2} T^{6} - 12 p^{3} T^{7} + p^{4} T^{8} \) 4.37.am_bv_akq_eai
41$D_4\times C_2$ \( 1 - 16 T + 3 p T^{2} - 816 T^{3} + 5512 T^{4} - 816 p T^{5} + 3 p^{3} T^{6} - 16 p^{3} T^{7} + p^{4} T^{8} \) 4.41.aq_et_abfk_iea
43$D_4\times C_2$ \( 1 + 2 T - 70 T^{2} - 24 T^{3} + 3455 T^{4} - 24 p T^{5} - 70 p^{2} T^{6} + 2 p^{3} T^{7} + p^{4} T^{8} \) 4.43.c_acs_ay_fcx
47$D_{4}$ \( ( 1 + 10 T + 106 T^{2} + 10 p T^{3} + p^{2} T^{4} )^{2} \) 4.47.u_ma_ens_blbq
53$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \) 4.53.am_kg_aczo_bhnn
59$D_4\times C_2$ \( 1 + 4 T - 54 T^{2} - 192 T^{3} + 475 T^{4} - 192 p T^{5} - 54 p^{2} T^{6} + 4 p^{3} T^{7} + p^{4} T^{8} \) 4.59.e_acc_ahk_sh
61$D_4\times C_2$ \( 1 - 8 T - p T^{2} - 24 T^{3} + 8000 T^{4} - 24 p T^{5} - p^{3} T^{6} - 8 p^{3} T^{7} + p^{4} T^{8} \) 4.61.ai_acj_ay_lvs
67$D_4\times C_2$ \( 1 - 14 T + 26 T^{2} - 504 T^{3} + 11279 T^{4} - 504 p T^{5} + 26 p^{2} T^{6} - 14 p^{3} T^{7} + p^{4} T^{8} \) 4.67.ao_ba_atk_qrv
71$D_4\times C_2$ \( 1 - 26 T + 378 T^{2} - 4056 T^{3} + 35767 T^{4} - 4056 p T^{5} + 378 p^{2} T^{6} - 26 p^{3} T^{7} + p^{4} T^{8} \) 4.71.aba_oo_agaa_caxr
73$C_2$ \( ( 1 - 7 T + p T^{2} )^{4} \) 4.73.abc_wo_alcq_ekjb
79$C_2$ \( ( 1 - 12 T + p T^{2} )^{4} \) 4.79.abw_btk_abbbk_lcag
83$D_{4}$ \( ( 1 + 2 T + 50 T^{2} + 2 p T^{3} + p^{2} T^{4} )^{2} \) 4.83.e_ea_um_zbq
89$D_4\times C_2$ \( 1 - 4 T + 42 T^{2} + 816 T^{3} - 8669 T^{4} + 816 p T^{5} + 42 p^{2} T^{6} - 4 p^{3} T^{7} + p^{4} T^{8} \) 4.89.ae_bq_bfk_amvl
97$D_4\times C_2$ \( 1 + 8 T - 94 T^{2} - 288 T^{3} + 9347 T^{4} - 288 p T^{5} - 94 p^{2} T^{6} + 8 p^{3} T^{7} + p^{4} T^{8} \) 4.97.i_adq_alc_nvn
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.151157289488149513842841678272, −8.140783541663870027642441129047, −7.974371592106802000148146193456, −7.72525347648508254982047923444, −7.62935451291313892241780289312, −7.23508117730061127538448785988, −6.93087835010702132098129200340, −6.61746813186597095788143631244, −6.52181702791632764589740287631, −6.10071700097751240563718355436, −5.82671297125632708429094782304, −5.59533627789894675940239153603, −5.39458720731374372812390388586, −4.96097792207926246226298833518, −4.92879554675441559601702054416, −4.28141050515175846544284002399, −3.82434984842251552911617492172, −3.75890719590719082417802568656, −3.66412426494240923247692663396, −3.42531735867207207415902522980, −2.76744868603399712662378713693, −2.14884726539229334641773587923, −1.94892222844565121960075141647, −0.73283795146357341993373218473, −0.67953020918653633585030307650, 0.67953020918653633585030307650, 0.73283795146357341993373218473, 1.94892222844565121960075141647, 2.14884726539229334641773587923, 2.76744868603399712662378713693, 3.42531735867207207415902522980, 3.66412426494240923247692663396, 3.75890719590719082417802568656, 3.82434984842251552911617492172, 4.28141050515175846544284002399, 4.92879554675441559601702054416, 4.96097792207926246226298833518, 5.39458720731374372812390388586, 5.59533627789894675940239153603, 5.82671297125632708429094782304, 6.10071700097751240563718355436, 6.52181702791632764589740287631, 6.61746813186597095788143631244, 6.93087835010702132098129200340, 7.23508117730061127538448785988, 7.62935451291313892241780289312, 7.72525347648508254982047923444, 7.974371592106802000148146193456, 8.140783541663870027642441129047, 8.151157289488149513842841678272

Graph of the $Z$-function along the critical line