Properties

Label 2-312-13.12-c1-0-1
Degree $2$
Conductor $312$
Sign $0.554 - 0.832i$
Analytic cond. $2.49133$
Root an. cond. $1.57839$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2i·5-s + 2i·7-s + 9-s + 4i·11-s + (−3 − 2i)13-s + 2i·15-s + 6·17-s − 2i·19-s + 2i·21-s − 4·23-s + 25-s + 27-s + 6·29-s − 2i·31-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894i·5-s + 0.755i·7-s + 0.333·9-s + 1.20i·11-s + (−0.832 − 0.554i)13-s + 0.516i·15-s + 1.45·17-s − 0.458i·19-s + 0.436i·21-s − 0.834·23-s + 0.200·25-s + 0.192·27-s + 1.11·29-s − 0.359i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(312\)    =    \(2^{3} \cdot 3 \cdot 13\)
Sign: $0.554 - 0.832i$
Analytic conductor: \(2.49133\)
Root analytic conductor: \(1.57839\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{312} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 312,\ (\ :1/2),\ 0.554 - 0.832i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.35354 + 0.724393i\)
\(L(\frac12)\) \(\approx\) \(1.35354 + 0.724393i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 + (3 + 2i)T \)
good5 \( 1 - 2iT - 5T^{2} \)
7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - 4iT - 11T^{2} \)
17 \( 1 - 6T + 17T^{2} \)
19 \( 1 + 2iT - 19T^{2} \)
23 \( 1 + 4T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + 2iT - 31T^{2} \)
37 \( 1 + 8iT - 37T^{2} \)
41 \( 1 + 6iT - 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 - 8iT - 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 - 8iT - 59T^{2} \)
61 \( 1 + 14T + 61T^{2} \)
67 \( 1 + 14iT - 67T^{2} \)
71 \( 1 + 12iT - 71T^{2} \)
73 \( 1 + 4iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 + 6iT - 89T^{2} \)
97 \( 1 + 12iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.23416523760341517012630761573, −10.65586757290161388459012614812, −9.967718907482976454477574665922, −9.127673101909468779132099900692, −7.82051491543289708817066496019, −7.22929784585604966633918591841, −5.95750109635527664408213966840, −4.70885138345701211341794423163, −3.18417782888873328668405113284, −2.23185768881719592161745872275, 1.19324530195009471651560356750, 3.11774083631319730255891746586, 4.29735082485778753658538410279, 5.42143325931896951905538082359, 6.76470848570786728670230976514, 7.983005416588350245760703232595, 8.518645322848007945416252594660, 9.710000530282027186185716178835, 10.35102684008798778077439152506, 11.73424193741003206223035966760

Graph of the $Z$-function along the critical line