Properties

Label 8-3100e4-1.1-c0e4-0-2
Degree $8$
Conductor $9.235\times 10^{13}$
Sign $1$
Analytic cond. $5.72895$
Root an. cond. $1.24382$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 9-s − 2·13-s + 3·16-s + 2·17-s + 2·36-s + 2·37-s − 2·41-s − 49-s + 4·52-s − 2·53-s − 4·64-s − 4·68-s + 2·73-s + 81-s − 2·113-s + 2·117-s − 121-s + 127-s + 131-s + 137-s + 139-s − 3·144-s − 4·148-s + 149-s + 151-s − 2·153-s + ⋯
L(s)  = 1  − 2·4-s − 9-s − 2·13-s + 3·16-s + 2·17-s + 2·36-s + 2·37-s − 2·41-s − 49-s + 4·52-s − 2·53-s − 4·64-s − 4·68-s + 2·73-s + 81-s − 2·113-s + 2·117-s − 121-s + 127-s + 131-s + 137-s + 139-s − 3·144-s − 4·148-s + 149-s + 151-s − 2·153-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 31^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{8} \cdot 31^{4}\)
Sign: $1$
Analytic conductor: \(5.72895\)
Root analytic conductor: \(1.24382\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{8} \cdot 31^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5831773635\)
\(L(\frac12)\) \(\approx\) \(0.5831773635\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + T^{2} )^{2} \)
5 \( 1 \)
31$C_2$ \( ( 1 + T^{2} )^{2} \)
good3$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
7$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
11$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
13$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
17$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
19$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
29$C_2$ \( ( 1 + T^{2} )^{4} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
41$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
43$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_1$$\times$$C_2$ \( ( 1 + T )^{4}( 1 - T + T^{2} )^{2} \)
59$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
61$C_2$ \( ( 1 + T^{2} )^{4} \)
67$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
71$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
73$C_1$$\times$$C_2$ \( ( 1 - T )^{4}( 1 + T + T^{2} )^{2} \)
79$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
83$C_2$$\times$$C_2^2$ \( ( 1 + T^{2} )^{2}( 1 - T^{2} + T^{4} ) \)
89$C_2$ \( ( 1 + T^{2} )^{4} \)
97$C_2$ \( ( 1 + T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.16381847990430323535199908533, −5.98715574797049167147782332653, −5.91093858056893490147509846461, −5.88274888478317200341413901089, −5.30304931076906675963313366707, −5.23198607974069209289418157679, −5.09918678045662686728771305503, −4.97143835243241016204739898254, −4.88310409215835416331300301929, −4.68017796430249255503773980469, −4.23970261704306929313984670711, −4.10318184697321885403466354762, −3.91736918097856546598868887130, −3.59981290804783331856514146506, −3.51383858951546843697333741578, −3.09431103325134813198783635849, −3.04412824997628549666527584408, −2.75156659955254892569923343851, −2.65256991078319631942686153038, −2.23037433402858497961219569458, −1.74559645941708754083880639272, −1.58054565546216370193845008479, −1.30814555671626182352958960495, −0.67251071707989783199691988789, −0.48606837205745077532715184452, 0.48606837205745077532715184452, 0.67251071707989783199691988789, 1.30814555671626182352958960495, 1.58054565546216370193845008479, 1.74559645941708754083880639272, 2.23037433402858497961219569458, 2.65256991078319631942686153038, 2.75156659955254892569923343851, 3.04412824997628549666527584408, 3.09431103325134813198783635849, 3.51383858951546843697333741578, 3.59981290804783331856514146506, 3.91736918097856546598868887130, 4.10318184697321885403466354762, 4.23970261704306929313984670711, 4.68017796430249255503773980469, 4.88310409215835416331300301929, 4.97143835243241016204739898254, 5.09918678045662686728771305503, 5.23198607974069209289418157679, 5.30304931076906675963313366707, 5.88274888478317200341413901089, 5.91093858056893490147509846461, 5.98715574797049167147782332653, 6.16381847990430323535199908533

Graph of the $Z$-function along the critical line